
Automating the production of bibliographic
records for MEDLINE

An R&D report of the
Communications Engineering Branch
Lister Hill National Center for Biomedical Communications
National Library of Medicine

September 2001

 2

Contents

1 Background …………………………………………………………………. 3
2 Project objectives …………………………………………………………….. 5
3 Project significance ……………………………………………………………. 6
4 System description …………………………………………………………… 6
 4.1 Overview …………………………………………………………. 6

4.2 Database considerations …………………………………………. 9
 4.3 OCR system evaluation and selection ……………………………. 12
5 Automated zoning ……………………………………………………………. 15
6 Automated labeling ………………………………………………………….. 23
7 Automated reformatting ……………………………………………………... 35
8 Lexical analysis to improve recognition ……………………………………... 41
 8.1 Lexical analysis to reduce highlighted words ……………………. 41

8.2 Lexical analysis to improve recognition of Affiliations …………. 44
9 Operator workstations ………………………………………………………... 49

9.1 Scan ………………………………………………………………. 49
9.2 Edit ………………………………………………………………. 51
9.3 Reconcile …………………………………………………………. 54

10 Production supervision and control tools …………………………………….. 58
 10.1 CheckIn ………………………………………………………… 59
 10.2 Admin …………………………………………………………... 61

10.3 CrashPatrol ……………………………………………………… 65
11 System performance evaluation ……………………………………………… 66
12 Next tasks …………………………………………………………………….. 74
 12.1 Ground truth data: PathFinder …………………………………... 74
 12.2 Data extraction from online journals ……………………………. 79
 12.3 Alternative method for text verification ………………………… 85
13 References …………………………………………………………………….. 87

Organization of this report. In this report we aim to present both our research in image analysis
and understanding, as well as the practical considerations in creating an operational system.
Following the background statement, project objectives, and project significance, Section 4
presents a system description, database design and organization, and testing to select the OCR
system; Sections 5-7 describe the analysis and design of the key automated processes for zoning,
labeling and reformatting; Section 8 describes lexical analysis work to improve productivity;
Section 9 describes the design and implementation of operator workstations; Section 10 describes
other systems designed to assist production control and supervision; Section 11 gives an account of
performance evaluation; and Section 12 outlines next steps. References to the literature appear in
Section 13.

 3

Automating the production of bibliographic
records for MEDLINE

1. Background

The Communications Engineering Branch has had a longstanding involvement in
document and biomedical imaging from many different standpoints: image capture,
storage and retrieval, lossy and lossless compression, image enhancement and other types
of image processing. Document imaging research, in particular, has been applied to the
design and development of prototype systems to serve as testbeds for investigations into
electronic archiving and preservation of library materials1-4, automated interlibrary loan
systems5,6 , on-demand document delivery7,8, and Internet-enabled document delivery and
management for the end user9-12 . In addition, we have engaged in several years of related
and relevant R&D in document image analysis and understanding13-19.

In 1996 following the unprecedented shutdown of the Federal Government, the National
Library of Medicine unexpectedly lost its longstanding contractual arrangements for the
keyboarding of bibliographic data into MEDLINE, with no immediate prospects for
reinstating those contracts. A consequence of these events was that MEDLINE, our
flagship database, was getting out of date at the rate of 30,000 to 40,000 citations every
passing month. This clearly untenable situation proved to be an opportunity to improve
upon the production performance of the labor intensive manual keyboarding of
bibliographic data by combining key technologies already familiar to our R&D staff
engaged in the projects listed above: in particular, document scanning, optical character
recognition (OCR) and image analysis techniques13,14,19.

To make an immediate difference we focused on the OCR conversion of the abstract, the
largest chunk of a MEDLINE bibliographic record, amounting to a maximum of 400
words. In a few weeks we had created two workstations by integrating scanners and a low
end OCR package already in our lab for NLM’s Library Operations staff to use as a short
term tool to try to tackle the growing backlog. It helped to some extent, but the error rate
of the simple OCR package proved to be unacceptably high, requiring a great deal of
manual correction.

Seeking a more satisfactory solution, we embarked on the design of a larger scale system
centered on a multi-engine OCR system and operator workstations for scanning,
keyboard entry and verification (“reconciling”). This first generation system20 code-
named Medical Article Records System, MARS-1, allowed a scan operator to capture the
first page of every article and manually zone the article title and abstract in the TIFF
image for conversion by OCR. An editor marked up the journal article with instructional
notes for the keyboarders to enter other fields. Concurrently or at any time, a keyboarder
entered into a template all fields except for the abstract. Since double-keying was
considered necessary for high accuracy, a second keyboarder repeated this process for the
same articles. These two manual entries (one from each keyboarder) were then compared

 4

by a DIFF module in a matching server, producing a "citation difference" file
highlighting inconsistencies. A MATCH module then matched the article title field in the
citation difference file with the article title from the OCR output. The system now
"knew" that the abstract and the rest of the keyed-in fields belonged to a particular article,
and the reconcile operators were presented with a combined set of fields to be verified
and corrected, and then uploaded to the NLM mainframe for use by the library’s
indexers. The indexers added the appropriate descriptive information such as MeSH
terms, thereby completing the bibliographic record to be added to MEDLINE.

At installation, in its skeletal form, MARS-1 produced about 67 completed records a day.
Over the next several months, the system was scaled up to eventually double the number
of machines and operators. This scaling up and, what was equally important, incremental
improvements, increased the production rate to over 600 completed records a day, a third
of the total requirement at NLM, the goal that had been set from the beginning. The goal
was to produce a third by MARS, a third by contract keyboarders and the remaining third
from SGML (later, XML) coded records sent to NLM directly by journal publishers.

While pursuing image analysis research toward the design of a more comprehensively
automated system, we introduced incremental improvements to increase the productivity
of MARS-1 operators as outlined below:

Barcode scanners. Finding the manual entry of the nine digit “MRI number” uniquely
identifying the journal issue burdensome and error-prone, all workstations were equipped
with a barcode scanner. The MRI is a very important number because it identifies the
journal issue and is the gateway to all the articles in that issue, the image files and the
OCR output files.

Click select special symbols. In the case of the Greek letters and biomedical symbols
which are not recognized by the OCR, a window with a list of these symbols in words
(ALPHA for α, for instance) was provided to enable the operators to click on the words
which are then automatically entered in the right place in the text. So even though the
OCR system does not recognize these symbols, we made it easier for the operators to
enter them.

Programmed keys. At first diacritics, NIH grant numbers and databank accession
numbers (e.g., from GenBank) were entered separately after the MARS process, turning
out to be laborious. It was much better for the keyboarders to enter these as they
encountered them in the article. So the keyboarding template software was modified to
accommodate programmed keys for diacritics, resulting in a 4% improvement in
production rate.

Spellcheck using biomedical lexicons. While OCR errors were expected, a more
serious problem was the fact that the OCR system incorrectly assigned low confidence
values to perfectly correct characters resulting in the highlighting of an excessive number
of correct words on the workstation screen, requiring the reconcile operator to tab
unnecessarily through all these correct words. The solution was to develop a spellcheck
module relying on a combination of biomedical lexicons, the NLM's UMLS
Metathesaurus and the Specialist Lexicon, and heuristic rules related to word lengths.21
This feature cut down the highlighted correct words and the corresponding burden on the

 5

operators by about 50%. The net increase in production level due to this improvement
was about 4%.

With MARS-1 in production, the design of the next generation system20a was begun to
introduce more comprehensive automation and lower per-unit cost. MARS-2 is a
database-centered and database-driven system that incorporates subsystems for
automated page segmentation (zoning), automatic field identification (or labeling),
automated syntax reformatting, and a classifier for the Greek letters and other symbols
that the OCR system does not handle, all processes eliminating or reducing human labor.
Three types of operators are still necessary: for scanning, editing and reconciling, but
there are differences. The scan operator does less than he/she did in MARS-1 since
manual zoning, a time consuming step, is eliminated. The “edit” operator combines the
job of the editor and keyboarder in MARS-1, but much of the previous keyboarder's work
is eliminated. The reconcile operator’s task to verify and correct any errors remains the
same. A description of MARS-2 appears in Section 4.

This report is organized as follows. Following the background statement, project
objectives and project significance, Section 4 presents a system description including
database organization and testing to select the OCR system; Sections 5-7 describe the
image analysis and understanding work underlying the automated processes for zoning,
labeling and reformatting; Section 8 describes lexical analysis techniques that improve
the character and word recognition in the extracted fields; Section 9 describes the
operator workstation design; Section 10 describes other systems designed to assist
production control and supervision; Section 11 gives an account of performance
evaluation; and Section 12 outlines next steps. References to the literature appear at the
end.

2. Project objectives

The objectives of this project are to:

(a) research and apply document image analysis and understanding techniques to the
problem of automating the production of bibliographic records for MEDLINE;

(b) build, operate and maintain a practical production system for this purpose;

(c) use the production system as an experimental testbed to conduct research in document
image analysis and understanding techniques, to identify opportunities for improved
performance, and to optimize the performance of manual processes inevitable in a
practical system (e.g., verification of the output of automated processes);

(d) redesign and modify subsystems, or create new subsystems, to achieve improved
performance;

 6

(e) enable the computer science and informatics research communities to conduct further
image analysis research toward the development of algorithms, tools and techniques for
automated data extraction and other applications by providing ground truth data.

3. Project significance

There are two principal and obvious reasons why automated data entry is of interest: first,
the gradual rise of labor costs; and second, the unrelenting increase in the amount of data
that needs to be entered into databases from paper-based information. The vast majority
of the hundreds of databases produced in every discipline rely on laborious keyboard
entry of bibliographic information from articles in journals, e.g., article title, author
names, institutions, abstract, dates, page numbers, etc. Image analysis and understanding
techniques provide the basis for the development of automated systems that promise a
cheaper alternative to keyboarding, and a more timely availability of bibliographic data
for the public.

4. System description

To provide context for the subsequent discussions of image analysis research, in this
section we first describe the overall system (MARS-2) that serves both as an
experimental testbed as well as a practical production tool. Secondly, since the system is
database-centered and database-driven, we outline the design of the central database that
controls the workflow and which serves as the repository for all data flowing in and out
of the many processes. Thirdly, since the optical character recognition system is key to
the extraction of text from the document images, we describe the evaluation criteria and
test results that pointed to the package selected.

4.1 Overview

The MARS-2 system consists of both automated and operator-controlled subsystems as
shown in Figure 4.1. The schematic shows automated processes as boxes with thin
boundaries, and manual workstations with thick boundaries. The workflow is initiated at
the CheckIn stage where a supervisor scans the barcode on a journal issue arriving at the
production facility. As mentioned earlier, this barcode number, called the “MRI”, is
routinely affixed to every journal issue by NLM staff. It therefore serves as a unique key
to identify the issue, all the pages scanned in that issue, and indeed the outputs of all
processes performed on those page images. The scanning operator captures the first page
of every article in the issue, since this page contains the fields we seek to extract
automatically. The resulting TIFF images go into a file server and associated data into the
MARS database for which the underlying DBMS is Microsoft’s SQL Server. The OCR
system accesses the TIFF images and produces the corresponding text as well as other
data descriptive of the text characters such as bounding boxes, attributes (bold, italic,
underlined), confidence level, font style and size, and others. The automatic zoning
(Autozone) module then blocks out the contiguous text using features derived from the
OCR output data, followed by the automated labeling (Autolabel) module that identifies

 7

the zones as the fields of interest (article title, author names, affiliations, abstract). The
Autoreformat module then organizes the syntax of the zone contents to adhere to
MEDLINE conventions (e.g., author name John A. Smith becomes Smith JA).

At this point, two lexicon-enabled modules operate on the data to reduce the burden on
the operator performing the final checking and verification of the data: ConfidenceEdit
modifies the incorrect confidence levels assigned to the characters by the OCR system,
and PatternMatch corrects institutional affiliations whose text is frequently recognized
incorrectly by the OCR system.

Some data cannot be automatically extracted. The major reason is that they appear in
pages other than the scanned first page. Such data is manually entered by a pair of edit
operators, a double-key process that ensures a high degree of accuracy. An EditDiff
module then correlates these different entries and notes differences. The output of the
automated processes and the edit operators is then presented to the reconcile operator
who verifies and corrects the text. The Upload module then sends the verified data to the
NLM’s DCMS (Data Creation Maintenance System) which is accessed by NLM indexers
to add MeSH terms and keywords, thereby completing the MEDLINE record.

The Admin workstation shown is used by the production supervisor to send a journal
issue back to an earlier processing stage in case of errors.

 8

Figure 4.1 MARS-2 general schematic

CheckIn

Initiate
workflow

PatternMatch
Correct affiliations

ConfidenceEdit
De-highlight correct
characters

Autoreformat

Scan
Insert page,
delete and
replace

Autozone Autolabel

 MARS Database

Admin
Request
reprocessing

Edit_Two

Key in data

Edit_One

Key in data

Reconcile
Verify and
correct data

NLM DCMS

Upload

 Automated processes

 Operator workstations

Paper journal flow

Data flow

OCR
Server

Library
Operations

EditDiff

 9

4.2 Database considerations

The MARS-2 system, as shown in Figure 4.1, is database-centered, and all data
pertaining to its operation is stored in an RDBMS, entered by certain processes and
retrieved by others. The RDBMS chosen for the MARS database is Microsoft SQL
Server 6.5 running under the Windows NT 4.0 Server operating system. This RDBMS is
scheduled for a major upgrade to MS SQL Server 2000 Enterprise Edition under
Windows 2000 Advanced Server with the Clustering / High Availability functionality.
This upgrade will provide the following advantages: a row-level locking scheme that
minimizes deadlocks, cascading referential integrity constraints that simplify the
implementation of business logic in applications, and functionality that enables XML to
be used to retrieve and modify values in the database. Other features of this upgraded
system are its availability of data types to handle Unicode (if this is considered useful in
the future), and user-friendly GUI-based tools for easier maintenance of the database
system.

The database-driven workflow in MARS is controlled by a module called the Work
Distribution Manager (WDM) that uses a set of database tables to determine when
processes (e.g., automated zoning, labeling, reformatting, etc.) should act on image and
text data, when the processes are completed, and which process must occur next in the
workflow. WDM resides within the database system, and relies on stored procedures and
scheduler to achieve its functionality.

The MARS database consists of sixty two tables, some of which are outlined in this
section and shown in the figures. The WorkInProgress table (WIP) serves as a central
hub containing common information for each database record (set of data related to a
single journal issue) and keeps track of whether the processing of data for a particular
journal issue is incomplete, has been completed, or is waiting to be archived. WIP uses
the MRI (journal issue identification number) as a primary key, and contains such
information as: the date the record is created, the date it is uploaded, location of the page
images and the text, total number of page images scanned, current process in progress (by
the PID or process identification number), the current stage of the process, the priority of
the journal as established by NLM’s Library Operations, and other data.

The Page Table contains data associated with a single scanned page. It keeps one level of
a tree of relationships in which a journal issue has many page images, a page has several
zones, zones have many text lines, and text lines have characters. A row in this table is
created by the Scan process, but most of the information is filled in by the output of the
OCR. It also contains information on the width and height of a page in 300 dpi units.

The Label Table defines all the zones, both from the scanner and from the OCR system.
For most records it will reflect OCR related information at the zone level, such as zone
sequence and zone coordinates, and also provide a link to the text output from the OCR.
Each process creates only its own labels instead of modifying labels that were created by
other processes, to preserve the historical data for journal issues processed through the
system.

 10

The Field Label Table defines all the fields that identify a citation, viz., article title,
author, affiliation and abstract label among other labels.

T-Date & Time
T-Date & Time
C-Fixed Length(255)
C-Fixed Length(255)
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
C-Variable Length(255)
N-Signed Integer
N-Signed Integer

C-Fixed Length(12)

I1

I1
I1
I1

I1

I1

PK,I1

archivedate
creationdate
imagelocation
ocrtextlocation
totalimages
currentpid
currentstage
currentimage
priority
finaltextlocation
operatorid
scannersourceid

mri

WIP

N-Signed Integer
C-Fixed Length(8)
C-Fixed Length(10)
T-Date & Time
C-Fixed Length(14)

C-Fixed Length(12)

I1

PK

issn
volume
issue
issuedate
other

mri

JournalIssue

N-Signed Integer
C-Fixed Length(255)
C-Fixed Length(21)
C-Variable Length(255)
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer

N-Signed Integer

U1

PK

pubid
journaltitleti
journaltitleta
instructions
priority
LO_Select
AItype
AffLocation
AbsType
FeatureType
AIFeatures
Width
Height

issn

JournalName

C-Fixed Length(12)
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
C-Fixed Length(1)

N-Signed Integer

I2,U1

PK

mri
pagemask
pagesequence
numberzone
dpi
width
height
firstpage

pageid

Page

N-Signed Integer

N-Signed IntegerPK

pageid

fieldlabelid

Features

N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
R-Picture

N-Signed IntegerPK

pageid
labeltypeid
labelmask
x1
x2
y1
y2
labeldata

labelid

Label

C-Fixed Length(255)

N-Signed IntegerPK

description

scannersourceid

Scanners

I1,U1

PK

publishername

pubid

Publisher

N-Signed Integer
N-Signed Integer

N-Signed Integer
N-Signed Integer

PK,I1
PK

labelid
confidence

fieldlabelid
labelingsourceid

LabelRanking

MARS II Database System
Major Tables

C-Fixed Length(80)

N-Signed IntegerPK

fieldtitle

fieldlabelid

FieldLabels

Figure 4.2.1

A complete listing of all the rules required for automated processing appears in the Rules
Table. There are two types of rules: edit rules and format rules. Edit rules are for special

 11

processing to offset OCR errors in the context of a word. For example, a zero (0)
occurring in the name “F0rd” would be reset to an "o". The more numerous format rules,
performed in a series of loops, implement the reformatting of field syntax, e.g., author
names appearing in a journal article in the conventional first name-middle initial-last
name sequence would be reformatted to the last name-space-first and middle initials form
required by MEDLINE. This table contains an identification number for each rule, the
text string that triggers a rule, and a text string that the rule triggers. This is discussed
further in Section 7 on Automated Reformatting.

N-Signed Integer
C-Variable Length(255)
C-Variable Length(255)

N-Signed IntegerPK

descriptionid
matchstring
actionstring

ruleid

Rules
N-Signed Integer
N-Signed Integer
N-Signed Integer

PK
PK
PK

ruleid
fieldlabelid
issn

LookupRules

MARS II Database System
Format Rules

Other tables keep track of performance data (time taken for a process to complete,
number of text lines written per second, number of words spell checked, etc.), scanner
settings, operator names and their work statistics, list of processes, the current stage a
process is in, and errors that are tracked. Stored procedures were created to support
reports of performance statistics. These tables are shown in the figure titled
Instrumentation, below.

 12

N-Signed Integer
C-Fixed Length(12)
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Decimal(18,3)
T-Date & Time
T-Date & Time
L-True or False

I4
I2,I4
FK1
FK1
I4,I3
I5,I4
I4
I1

issn
mri
currentimage
pid
pstage
eventid
operatorid
elapsedtime
startdate
enddate
reentrant

ProcessTime

N-Signed Integer
C-Fixed Length(12)
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Signed Integer
N-Floating Point
L-True or False

issn
mri
fieldlabelid
statid
pid
operatorid
value
reentrant

PerformanceData

C-Variable Length(255)

N-Signed IntegerPK

description

eventid

ProcessEvents

C-Fixed Length(255)

N-Signed Integer
N-Signed Integer

PK
PK

description

pid
pstage

ProcessStage

C-Fixed Length(80)

N-Signed IntegerPK

fieldtitle

fieldlabelid

FieldLabels

N-Signed Integer
C-Fixed Length(255)

N-Signed IntegerPK

npid
description

pid

ProcessQueue

C-Fixed Length(255)

N-Signed IntegerPK

description

statid

StatisticsID

MARS II Database System
Instrumentation

4.3 OCR system evaluation and selection

A key step in the design of MARS is the selection of the OCR system. This selection was
based on a performance comparison of six commercial packages, four of them single-
engine systems and Maxsoft-Ocron and Prime Recognition, both multiple-engine voting
systems. Testing was done on about 20,000 characters from 15 page images (scanned at
300 dpi) from five biomedical journals indexed in MEDLINE. All five journals were
selected because they appeared likely to cause conversion problems, e.g., because of
tightly packed text and small sized fonts.

The testing focused primarily on the number of error blocks (a “block” may be either a
character or a word, depending on the OCR package) in line with the following error

 13

criteria: (1) highlighted correct blocks, i.e., blocks that are highlighted by the OCR
system, but whose contents are correct (false alarms); (2) highlighted error blocks,
blocks that are highlighted, and whose contents have incorrect characters and correction
is required (correctly detected errors); (3) undetected blocks, which have incorrect
characters that are not highlighted (undetected errors). The data below shows Prime
Recognition superior with respect to all three error criteria.

False alarms Correctly detected errors Undetected errors
Prime Recognition = 168 Prime Recognition = 42 Prime Recognition = 6
Wordscan = 339 Wordscan = 72 Wordscan = 24
TextBridge = 70 TextBridge = 70 TextBridge = 37
Omnipage = 285 Omnipage = 66 Omnipage = 23
Cuneiform = 259 Cuneiform = 53 Cuneiform = 35
Maxsoft-Ocron = n/a Maxsoft-Ocron = n/a Maxsoft-Ocron = 33

Other evaluation factors, important in a practical production system, included: (1)
capability to proofread with a displayed bitmap, (2) medical dictionary interface, and (3)
accessibility from our application software. Only Prime Recognition fully met all the
criteria, the limitations of the other packages noted below.

Proofing with bitmap Medical dictionary

interface
Application-accessibility

Prime Recognition= Yes Prime Recognition = Yes Prime Recognition = Yes
Wordscan= small bitmap Wordscan= 13 char. limit Wordscan = Yes
TextBridge=need Word/ WP TextBridge=10K word limit TextBridge = No
Omnipage= Yes Omnipage= 5K word limit Omnipage = Yes
Cuneiform= Yes Cuneiform= 24 char. limit Cuneiform = No
Maxsoft-Ocron= No Maxsoft-Ocron= Yes Maxsoft-Ocron = Yes

In addition to character codes, the Prime Recognition OCR, in its output, provides rich
secondary data, e.g., character coordinates, confidence levels, font size, font attributes
and many others, much of which is exploited by downstream processes, as described later
in this report.

To incorporate the OCR software into the MARS system, we developed a module, Prime
Recognition OCR Daemon (PROD) that consists of a C++ class that acts as a wrapper for
the Prime Recognition C API, and also communicates with the MARS database. In
addition, it incorporates two other modules: (a) Bounding Box Corrector, software library
routines developed in cooperation with scientists at MathSoft, Inc.; and (b) an
independent OCR package from ScanSoft. The first is needed to correct the character
coordinates from the Prime Recognition OCR system to improve the reliability of our
inhouse zone correction algorithm (Section 5). The second provides more reliable initial
segmentation than the engines in the Prime Recognition package do for certain journal
layout types. For these journals, identified by ISSN in the database, the zones from
ScanSoft are used as a starting point for our zone correction algorithm.

 14

PROD is designed for flexibility. For example, we can set it for the number of CPUs
active in the OCR server, the number of OCR engines, for the correction of character
coordinates and for recording the time duration for OCR processing. Also, PROD may be
used to poll the database for journal issues ready to be processed by the OCR, and to
begin or stop processing.

 15

5. Automated Zoning

The first step after the conversion of the bitmapped image by the OCR system is to apply
image analysis techniques to block out (“zone”) the regions of contiguous text, in
particular those text groups corresponding to the bibliographic fields of highest interest:
viz., article title, authors, affiliation, and abstract. Our survey of ongoing research in the
application of image analysis to automated zoning described in the literature appears in
Section 5.1.

The commercial OCR system used in the MARS system includes a package to perform
automatic zoning. However, our experiments showed that this function does not segment
the page images into zones containing the bibliographic fields of interest with sufficient
accuracy. The most common error made by the commercial automatic zoning function is
that zones are too large and include more than one significant text group. Figure 5.1
illustrates a typical case where the title, author, abstract and affiliation are all in one zone,
along with extraneous publication identification. Figure 5.2 illustrates another case
where, in addition to the previous problem, a two-column abstract is grouped
inappropriately into a single zone. In this example, the text lines in the two columns are
joined, disrupting the proper reading order. For example, the middle text of the first line
of the zone is incorrectly read as "..models have opment of..."

Correct zones are critical to downstream processes in MARS-2. The stage that follows
automated zoning is the automated labeling of the zones as title, authors, affiliation and
abstract.22 This complex labeling process uses several items of information in each zone
to determine its identity. Information used to label a zone include absolute and relative
location of the zone, and key words within the zone. Clearly, the zone region must be
correct if it is to provide useful information to the labeling program.

Downstream from automatic zoning and labeling, the title, author and affiliation fields
are automatically reformatted to comply with MEDLINE conventions23. This process
also depends on correctly sized and labeled zones to be effective. Incorrect zones
confound reformatting, ultimately requiring time-consuming manual intervention at the
reconcile stage, thereby offsetting the advantage expected from an automated system.

An alternative to automatic zoning is to require operators to manually draw, using special
software and the mouse, correct zones onto the bitmapped images prior to the OCR
process. This was done in the MARS-1 system to identify the title and abstract zones. It
took operators about 14 seconds per image to draw these two zones. For the four zones
needed in MARS-2, we can estimate that it would require about 28 seconds per image of
operator time to perform manual zoning, a considerable burden. For example, for a
production rate of 1,000 records a day, manual zoning would add over 7 person hours of
labor, approximately equivalent to an additional full time worker.

Since we cannot depend on the commercial OCR system to correctly zone images, and
seek to eliminate manual zoning, we developed our own automatic zoning capability.
With our own process, we free ourselves from depending on the commercial OCR system

 16

for automatic zoning, and can tailor the zone program design and operating parameters
for images from the specific biomedical journals relevant to MEDLINE. However, rather
than starting from scratch, we combine the automated zoning capability of the OCR
system with our added functionality for zone correction.

 17

Fi
gu

re
 5

.1
 A

n
ex

am
pl

e
of

 la
rg

e
zo

ne
s g

en
er

at
ed

 b
y

th
e

co
m

m
er

ci
al

 O
C

R
 sy

st
em

.
Fi

gu
re

 5
.2

 A
 se

co
nd

 e
xa

m
pl

e
of

 la
rg

e
zo

ne
s

ge
ne

ra
te

d
by

 th
e

co
m

m
er

ci
al

 O
C

R
 sy

st
em

.

 18

5.1 Methods and Procedures

Much of the research reported in the literature employ methods analogous to those used
to isolate and separate characters (symbol isolation) to segment page images into zones.
A brief survey of activity in automatic zoning methods is given in Jain24. Approaches
include "top-down" methods25, which segment a page by x-cuts and y-cuts into smaller
regions, "bottom-up"26,27, which recursively grow homogeneous regions from small
components, and combinations of both24,28. Tradeoff factors include: granularity (finding
small enough zones), computation time, and sensitivity to input parameters such as noise,
skew and page orientation29-31. Top-down methods tend to be faster and less sensitive to
input parameters and page orientation, but require pages to have a "Manhattan layout",
i.e., the blocks may be separated by vertical and horizontal lines. Bottom-up and
combination methods often result in greater accuracy at the expense of computational
complexity and sensitivity to input parameters. All of these methods zone the page using
image data alone, prior to OCR conversion. Since the reported performance is variable,
and because rich secondary data is available from our OCR system, our approach, in
contrast, is to exploit the output data of the OCR system to implement automatic zoning.

As noted earlier, in addition to ASCII text, the OCR system provides information about
each of the converted characters in the output file. This information includes the level of
confidence that the character was correctly recognized, character attributes such as italic
or bold, character point size, and the x and y coordinates of the rectangle that bounds the
character (bounding boxes)32. Thus we have both geometric and non-geometric feature
information available for each converted character. Our approach is to draw upon these
features to group text into correct zones. For example, we use the bounding box
coordinates to determine which characters are grouped closely in the same region on the
page. Information on character size and attributes provide additional clues for keeping
groups of adjacent characters together or placing them in separate zones.

Our zone correction method uses both top-down and bottom-up design strategies41, used
by other investigators on image data, on our OCR output (non-image) data. The overall
procedure is outlined in Table 5.1, and an example is given in Figure 5.3.

Table 5.1 Zone correction program steps

Input Function Output

1. Zones and data from OCR
system

Separate zones into text lines Text lines

2. Text lines Separate lines into fragments Text lines, fragments
3. Lines and line fragments Combine lines vertically into

zones
Initial zones

4. Initial zones Combine zones horizontally into
zones

Final zones

 19

Original Zones from OCR Server

After Step 1 After Step 2 After Step 3 After Step 4
Figure 5.3 Zone correction program steps

The first step in creating new zones is to disassemble the original zones from the OCR
system. Each zone is divided into individual text lines. In step 2, lines are further split
horizontally into multiple lines when the space between words exceeds a distance
threshold (empirically determined). This occasionally results in unnecessarily splitting
lines into multiple parts, but is needed in order to split lines that originally span across
two closely spaced columns, as shown in Figure 5.3. Some of these lines will be rejoined
in later steps. The bounding box enclosing each line is computed, as are several features
such as percent italic characters and average character height. Some character features,
such as bold or italic, are available directly from the OCR output data. Others, such as
character height or case (upper or lower), are computed from the OCR output data.

In step 3, we combine the lines vertically into initial zones. The criteria for combining are
that (a) the vertical distance between lines must be less than a threshold (again,
empirically determined); (b) either the left edge, right edge or midpoint must be
horizontally aligned; and (c) the features computed in the previous step must be similar.
When a line is added to a zone, the zone's rectangular boundary is expanded to include
the new line. Then all remaining lines are checked to see if they fall within the new zone.

 20

If so, they are added to the zone. Many of the horizontally split lines are recombined in
this way.

On rare occasion, some zones created in step 3 are too narrow. In this event, the fourth
and last step is to combine such zones horizontally using criteria similar to those in the
previous step. Here, the initial zones are combined if (a) the horizontal distance between
the zones is less than a threshold; (b) either the top or bottom edges of the zones are
vertically aligned; and (c) the computed features of the two zones are similar. When
zones are thus merged, a new zone boundary rectangle is created to include both zones.
Any smaller zones that fall within the rectangle are subsumed within this zone.

Figures 5.4 and 5.5 show the results of these steps applied to the two images used as
examples in Figures 5.1 and 5.2. In both of these images, the title, author, affiliation and
abstract are enclosed in separate zones, as required. In addition, in Figure 5.5, the two
columns of the abstract are in separate zones. These two zones will be identified as
abstract by the automated labeling process, which follows the zone correction process,
and the enclosed text will be organized in the proper reading order.

 21

Fi
gu

re
 5

.4
 C

or
re

ct
 z

on
es

, g
en

er
at

ed
 b

y
th

e
zo

ne

co
rr

ec
tio

n
al

go
rit

hm
.

Fi
gu

re
 5

.5
 A

no
th

er
 e

xa
m

pl
e

of
 z

on
es

 g
en

er
at

ed
 b

y
th

e
zo

ne
co

rr
ec

tio
n

al
go

rit
hm

.

 22

5.2 Evaluation of automated zoning

Following initial testing and refinement, the zoning algorithm was tested with a set of
page images from 59 journal issues that would become the first set of journals to be
processed by the MARS-2 system. Journals selected had a page layout in which the title,
authors, affiliations and abstract were all in one column, and appeared on the page in that
order. Table 5.2 summarizes the scores for the 295 images in this set. Overall, of the
1,180 possible zones of interest, the zone correction program generated 1,155 correct
zones, for a correct rate of 97.9%.

Table 5.2 Results of zone correction for 295 pages from 59 journal issues

Field Error Type
 split too

big
too

small
merged totals % images with an error in

this field
Title 7 7 2.4
Author 1 4 5 1.7
Affiliation 4 5 9 3.1
Abstract 3 1 4 1.4
totals 15 0 0 10 25
% images
with this error

5.1 0 0 3.4

5.3 Implementation

Based on the low error rates achieved in testing, the automatic zone correction algorithm
was implemented for the MARS-2 system. A C++ zone correction class was written in
the Microsoft Visual Studio development environment. The class is incorporated with the
ZoneCzar module that also includes the automated labeling function described in Section
6.

5.4 Performance in production

The original zone correction algorithm has continued to evolve in response to feedback
from production operators and to observations from continued internal evaluation. As
more journal layout types are added to those processed by MARS-2, code to
accommodate new circumstances has been added to the algorithm, but the overall design
has not changed. For example, to correctly zone pages in which affiliations are found at
or near the bottom of the page, usually in small-sized fonts, computed threshold values
are different for lines and zones that begin at the bottom third of the page than they are
for the rest of the page. Although performance has remained consistently good, we

 23

anticipate challenges as we increase the number of journal titles and layout types
accommodated by MARS in the future.

6. Automated Labeling

Once the contiguous text regions in a bitmapped page image are zoned, the next step is to
label the zones, i.e., identify each zone as one of the bibliographic fields of interest. The
figure below shows the sequence of steps: the bitmapped TIFF image of the scanned
page, the output of the automated zoning module (AZ) and the output of the automated
labeling module (AL).

(a)
 (b)

 (c)
Figure 6.1 Results of AZ and AL Modules. (a) Bitmapped page image (b) AZ output, and

(c) AL output

 24

Image analysis techniques for document labeling proposed in the literature33-37 are based
mostly on the layout (geometric) structure and/or the logical structure of a document.
Hones et al.33 describe an algorithm for layout extraction of mixed-mode documents, and
the classification of these documents as text or non-text. Taylor et al.34 describe a
prototype system using a feature extraction and model-based approach. Tsujimoto et al.35
present a rule-based technique based on the transformation from a geometric structure to
a logical structure. Tateisi et al.36 propose a method based on stochastic syntactic analysis
to extract the logical structure of a printed document. They use simple rules to label
documents into three classes. Niyogi et al.37 use a rule-based system to label newspaper
contents into thirteen labels such as headline, text paragraph, photograph, and so on.
These labeling techniques rely mostly on rule-based algorithms, but other mechanisms
such as artificial neural networks (ANN) and decision trees are also investigated.

One drawback to ANN and decision tree methods is that they need training as a pre-
processing stage. That is, the algorithms need to be re-trained whenever a new document
(in our case, a journal layout not seen previously) is encountered, and the training time is
proportional to the number of journal titles to be processed. Not only is this time
consuming, it also makes it difficult for exceptional situations to be handled quickly. In
addition, these techniques pose difficulties in readily using geometric information, e.g.,
the geometry between zones. Rule-based algorithms, on the other hand, do not need re-
training, can employ geometric information readily, and moreover, can accommodate
exceptional cases (slight divergence from a known layout type) by the addition of new
rules. Since the 4,300+ journal titles indexed in MEDLINE exhibit a wide range of layout
types, such exceptional cases can occur frequently. An automated labeling system needs
to handle a multiplicity of layout types and exceptional cases quickly, and without
extensive pre-processing and training.

Our research in this area focused on three approaches: the rule-based algorithmic
approach, an ANN method, and a template-matching technique. Our experiments and
findings are reported in the literature38-40. Based on these experiments, we decided to
implement our labeling system on rule-based algorithms since this approach delivered a
high accuracy rate, high speed of execution, and furthermore was amenable to
modification as new layout types were added.

Our approach relies on data from the OCR system which delivers information at the zone,
line and character level:

Zone level Zone boundaries, number of text lines
Line level Line boundaries, number of characters, average character height
Character level 8-bit character code, confidence level (1= lowest, 9 = highest),

bounding box, font size, font attribute (normal, bold, underlined,
italics, superscript, subscript, and fixed pitch)

The OCR output data is used to generate geometric and non-geometric features that, in
turn, are used to create rules. Geometric features are based on a zone’s location, order of
appearance, and dimensions. For example, the article title zone is usually located in the
top half of the page, followed by author, affiliation and abstract, in that order.

 25

Non-geometric features are derived from the text contents of a zone, aggregate statistics,
and font characteristics. For example, some zones can be characterized by the words in
them, and the frequency with which they occur. In such cases, word matching is an
important technique to generate non-geometric features in the AL module. For example, a
zone has a higher probability of being labeled as “affiliation” when it has words
representing country, city and school names. Also, a zone positioned between the words
“abstract” and “keywords” is more likely to be an abstract than any other bibliographic
field. Fifteen database tables containing word lists have been assembled as shown in
Table 6.1. Table 6.2 shows examples of geometric and non-geometric features.

Word matching relies on search algorithms such as hash tables, binary search tree, digital
search tree, ternary search tree, etc. We chose the ternary search tree on account of its
ability to yield both the time efficiency of the digital search tree and the space efficiency
of binary search trees, and its ability to perform advanced searches such as partial-
matching and near-neighbor search. Proposed by Bentley and Sedgewick in 1997, this
technique has been used for several years for searching English dictionaries in a
commercial OCR system built at Bell Labs56.

Table 6.1 Word list tables.

Table Name Words in the Table
Rubric Review, Orginal Article, etc.
KeyOfTitle Study, case, method, etc.
Author Smith, John, Kim, etc.
AcademicDegree Ph.D., MD, RN, etc.
Affiliation University, Department, Institute, etc.
Abstract Abstract, Summary, Background, etc.
Structured Abstract Aim, Result, Conclusion, etc.
Keyword Keyword, Index word, etc.
Received Received, Revised, Accepted, etc.
Introduction Introduction, Introduzione, etc.
ExtraDataInAffiliation Corresponding, Address, To whom, etc.
ExtraDataInLowerAffiliation Mail, fax, tel, etc.
Date January, February, 2000, etc.
Publisher Elsevier, John Wiley, etc.
JournalName Diabetes, endocrinology, etc.

Table 6.2 Features used in the Automated Labeling module.

Zone Features Variable Names

Geometric Features:
Zone coordinates TopCoordinate, BottomCoordinate,

LeftCoordinate, RightCoordinate

 26

Zone height and width HeightOfZone, LengthOfZone
Median value of height, length and space of
lines

MedianLineHeight, MedianLineLength,
MedianLineSpace

Difference between the bottom and top
coordinates of the bottom-most and top-most
zone

HeightOfArticle

Zone order in sequence of top left edge ZoneOrder

Non-Geometric Features:
Biggest and smallest font sizes in an article MaximumFontSize, MinimumFontSize
Number of text lines NumberOfLine
Number of characters and words NumberOfCharacter, NumberOfWord
Number of capital characters NumberOfCapitalCharacter
Dominant font attribute and font size FontAttribute, FontSize
Confidence of characters Confidence
Number of “M.D.”, “Ph.D.”, “RN”, etc. NumberOfDegree
Number of middle names, “Jr”, “Sr”, “II”, etc. NumberOfMiddleName
Number of city, state, country, school, etc. NumberOfAffiliation
Number of “abstract”, “summary”, etc. NumberOfAbstract
Number of “keywords”, “index words”, etc. NumberOfKeyword
Number of “review”, “article”, etc. NumberOfHeadtitle
Number of “received”, “accepted”, etc. NumberOfReceived
Number of “Introduction”, “Introduzione”, etc. NumberOfIntroduction
Percentage of academic degrees per word PercentOfAcademicDegree
Percentage of middle names per word PercentOfMiddleName
Percentage of affiliations per word PercentOfAffiliation
Percentage of capital characters per zone PercentOfCapitalCharacter

6.1 Definition of layout types
As noted, the MEDLINE database contains bibliographic records from over 4,300
journals. The physical layout of the first page of articles in these journals, and the order in
which the five important zones (title, author, upper affiliation, lower affiliation, and
abstract) appear on the first page may be used to categorize the zone labeling type for a
given journal. Figure 6.2 shows examples of common layout types consisting of a single
column, or a combination of single and multiple columns. The numbers in the gray
blocks indicate block numbers to help with the definitions of the more common zone
labeling types described in Table 6.3.

 27

Figure 6.2 Examples of common journal layout types. (a) Layout type 1; (b) Layout type
11; (c) Layout type 12; (d) Layout type 121; (e) Layout type 122.

The five important zones frequently appear in “first regular” or “second regular” zone
order. In the “first regular” zone order, the title is near the top of the page, followed by
author, affiliation in the upper part of the page (upper affiliation), and abstract. In the
“second regular” zone order, the title is followed by author and abstract, with the
affiliation appearing in the lower part of the page.

The zone labeling type for each journal is determined by the journal layout type and the
zone order. For example, if the journal pages are of layout type 121 [Figure 6.2(d)] and
the affiliation appears in block 4 (second regular), the zone labeling type is defined as
Type 12006. Other labeling types are described in Table 6.3.

Table 6.3 Description of zone labeling types

Zone
Labeling
Type

Includes
Layout
Type(s)

Zone order(s)
Description

Type 10000 1,11,12,12
1, 122

First regular Title, author, upper affiliation, and abstract are in
block 1.

Type 10006 11 Second regular Title, author, and abstract are in block 1. Lower
affiliation is in block 2.

 121 Second regular Title, author, and abstract are in block 1. Lower
affiliation is in block 4.

Type 12000 12, 121 First regular Title, author, upper affiliation are in block 1.
Abstract is in block 2, and may extend into block
3.

 122 First regular Title, author, upper affiliation are in block 1.
Abstract is in block 2.

Type 12006 121 Second regular Title and author is in block 1. Lower affiliation is
in block 4 Abstract is in block 2 and may extend

 28

in block 4. Abstract is in block 2, and may extend
into block 3.

Type 12200 122 First regular Title, author, upper affiliation is in block 1.
Abstract is in block 2 and 3.

6.2 Structure of AL module
Figure 6.3 shows the structure of the AL module and its interaction with the MARS
database whose tables contain information on every journal title (ISSN number). This
information includes layout type, physical size, affiliation location, abstract type, feature
type, and feature value. After page images from a particular journal issue are processed
by the AZ module, and the journal title (ISSN) is identified to the JournalName table, the
AL module retrieves all the relevant information from this table, and activates an AL
algorithm related to the zone labeling type. The output of the AL module, the
identification of the page zones, are written to the LabelRanking table in the database, for
further downstream processing.

Figure 6.3 Structure of automated labeling module

Journal Issue

AL Algorithm for
Type 10000

AL Algorithm for
Type 12000

AL Algorithm for
Type 12200

Labels AZ module

•
•
•

ISSN
Information corresponding to ISSN:
Layout Type, Physical Size, etc.

Page, Label JournalName LabelRanking

MR

Page and Label
Information
corresponding to
MRI

• • •

MARS-2 DataBase

 29

6.3 Rule-based algorithms in AL module
While all contiguous text regions on a page image are zoned, the only ones of interest in
the current MARS system are the article title, author, affiliation and abstract. Since
affiliation information could reside in the top part of the page as well as at the bottom, for
labeling purposes, we define an “upper affiliation” and a “lower affiliation” zone. Hence,
we have five possible labels. The remaining zones are labeled as “other”. For each label
type, there are four types of rules as shown in Table 6.3: rule types 1, 2 and 3 that are
different for each label classification, and rule type 4 that is the same for all. Our rule-
based algorithm consists of four steps.

In the first step, a probability of correct identification (PCI) is used in rule type 1. Every
zone has five PCIs, one for each label. A PCI is equivalent to the probability of a zone
possessing a particular label. The PCIs are derived empirically. For example, in the case
of upper affiliation, when more than 30% of words in a zone belong to the affiliation
word list, the PCI of upper affiliation is 100. Otherwise, PCI is equal to
PercentOfAffiliation ×100/30. In case of author, when more than 28% of words in a zone
belong to the list of middle names and academic degrees, the PCI of author is 100.
Otherwise, PCI= (PercentOfAcademicDegree + PercentOfMiddleName) × 100/28. In this
first step, when a zone has the highest PCI for a particular label, it is assigned that label.

The PCI thresholds of 30% and 28% for affiliation and author respectively are
established heuristically. In the case of author, we often find there are two authors in an
author zone, each author name usually consists of three words, and "and" is located
between the author names. We find that there are middle initials and academic degrees
associated with author names. So, a zone is likely to be labeled as author when the ratio
of the sum of academic degrees and middle initials to the total number of words in the
zone exceeds 2/7 or 28.6%. In the case of affiliations, it has been determined that a zone
is likely to be labeled as affiliation when 30% of the words belong to the affiliation word
list.

In the second step, the labeling results from step 1 are rechecked by rule type 4. For
example, when two zones are both labeled as author but one of those zones is located
between title and upper affiliation, and the other is located between upper affiliation and
abstract, the latter is removed from the author category.

In the third step, in addition to rule type 2, rule types 1 and 4 are applied again to make
sure that at least one zone is labeled as title, author, abstract, upper affiliation or lower
affiliation. For example, when a zone initially labeled as author does not contain
information relevant to author (NumberOfMiddleName=0 and
NumberOfAcademicDegree = 0), its location is then used to do the labeling. That is, its
label as author is verified by the facts that (a) it does not contain information related to
title or upper affiliation zones, and (b) it is located between title and upper affiliation
zones.

In the fourth step, problems caused by zoning errors such as a zone split into multiple
zones are handled by all rules, and any remaining unlabeled zones are labeled.

120 rules were generated for zone labeling types 10000, 10006, 12000, 12006, and
12200, and an example of detailed rules to detect upper affiliation is shown Table 6.4.

 30

Table 6.3 Rule Types used in AL Module

Rule Type Description

1 Use Probability of Correct Identification (PCI). Each label has its
own PCI equation. Example: When a zone has a high PCI for a label
zone (PCI ≥ 100), the zone is assigned as the label zone.

2 When a label does not have any zone, which has PCI ≥ 100, pick a
zone, which has the highest PCI for the label, and assign the zone as
the label.

3 Some features should be similar within the same label zones. I.e.,
when a title zone is divided into two separate zones, the two zones
have similar FontSize, FontAttribute, MedianLineHeight, etc.

4 TopCoordinate of title < TopCoordinate of author < TopCoordinate
of Upper affiliation < TopCoordinate of abstract author
< TopCoordinate of Lower affiliation

Table 6.4 Example of rules to detect Upper Affiliation

Rule Type Rule Description

1 1. TopCoordinate < HeightOfArticle /2
2. BottomCoordinate < HeightOfArticle×3/4
3. NumberOfWord ≥ 2
4. NumberOfAcademicDegree < 3 or
 PercentOfAcademicDegree < 30
5. NumberOfMiddlename < 3 or PercentOfMiddleName < 30
6. PercentOfCapitalCharacter < 50
7. NumberOfHeadtitle == NumberOfAbstract == 0
 NumberOfIntroduction==0
8. If all of above conditions are satisfied {

If (NumberOfAffiliation ≥ 2) {
If (PercentOfAffiliation ≥ 30) PCI =100;
Else PCI = PercentOfAffiliation×100/30;

}
Else {

If (PercentOfAffiliation ≥ 30) PCI =50;
Else PCI = PercentOfAffiliation×50/30;

}
}
Else {

PCI = 0
}

2 If (PCI < 100), pick a zone having the highest PCI for upper affiliation.

3 1.If (PCI > 25 and the next zone has NumberOfReceived ==1)
 PCI = 100.

 31

2.Distance from a zone to upper affiliation zone is smaller than any other
 label zones.
3.FontSize, FontAttribute, MedianOfLineHeight, and
 MedianOfLineSpace of a zone must be similar to upper affiliation zone.

4 TopCoordinate of title < TopCoordinate of author < TopCoordinate of
affiliation < TopCoordinate of abstract

6.4 Research tool for labeling
As noted earlier, the zoning and labeling functions are integrated into one module,
ZoneCzar. Since this is a daemon, there is no operator workstation. However, a GUI is
provided for a supervisor or the development team to check on problems or progress.
Apart from this, we created a research tool, Visual ZoneCzar, to help develop and test the
algorithms used for labeling. Its design is based on Visual C++(6.0).

Figure 6.4 GUI of Visual ZoneCzar

The purpose of Visual ZoneCzar is to test the algorithms on page images from a new
journal title to be included in the list of journal titles that may be processed automatically
by MARS-2. If the existing algorithms fail to successfully label the zones from the new
journal, rules are modified, and tests are repeated. This tool helps the researcher check
and verify that the algorithmic rules are in fact applicable to a particular journal.

As shown in Figure 6.4, the GUI of Visual ZoneCzar has two windows. The left window
displays zoning and labeling results on a TIFF image. The zones are displayed by red

 32

colored boundaries. The labeling results are displayed by different background colors and
text. For example, the article title zone is red accompanied by the word TITLE in red, and
the author zone is green with the word AUTHOR in green, and so on. Zones that are not
of interest are in gray.

The right window displays the text in the zones that are shown labeled in the left window,
and the labeling rules in the algorithm. In the example, the text in the zones that have
been labeled as affiliation and abstract are shown. The 14x17 table in the middle of the
window gives information on the rules being applied. A summary follows describing the
contents of this table.

The row number in the table corresponds to the ordinal number of zone number in the
OCR output data. The first column indicates zone number; the second column contains a
number representing labeling results. In the second column, for example, the “3” means
that zone 2 is labeled as a title. Other numbers (4, 5 or 7) would refer to author, upper
affiliation, and abstract labels. The third to the thirteenth column shows the calculated
PCIs for rubric, title, author, upper affiliation, word abstract, abstract, keyword,
introduction, lower affiliation, upper received, and lower received for each zone. A PCI
of 100 means that the zone is labeled as one of the five important labels which are title,
author, upper affiliation, lower affiliation, or abstract. For the other labels (not important
to the MARS system), a PCI of –99 is assigned. The fourteenth column has "100" when
the zone was assigned a PCI = -99. The fifteenth column has "100" when the zone is none
of the identifiable zones. The sixteenth column shows the rule number used to label the
zone. In the case of the second row, there are "2", "3", "100", and "1301" in the first,
second, fourth, and sixteenth columns. This is shorthand indicating that the zone number
two is labeled as title by rule 1301. The third row shows that zone number three is labeled
as author by rule 1400, and has PCI =50 to title label. The eighth row shows that zone
number eight is labeled as introduction by rule 1900.

A four-digit number is used to identify a rule. The highest digit indicates the step of
labeling process, the next digit indicates the label, and the lowest two digits indicate the
rule number. For example, 1301 in the second row means that in step one (1) of the
labeling procedure for the title label (3), rule one (01) was used.

Other information about the journal issue (MRI) obtained from the JournalName table in
the database is displayed at the bottom of the right window.

The tool bar of Visual ZoneCzar offers the researcher twelve buttons to navigate and
control the data. The first button displays the first page image in the journal issue, the
second button displays the previous page, the third button displays a page in the middle
of the group of pages, the fourth button displays the next page, and the fifth button
displays the last page. The sixth and seventh buttons are to minimize and maximize the
TIFF images. The eighth through the twelfth buttons control the zoning and labeling
process. The AZ button runs the zoning module, DR OCR and DR AZ buttons display
the OCR and zoning results, AL runs the labeling process, and ALL runs both zoning and
labeling modules.

6.5 Performance in production

 33

Currently the AL module can reliably process 2,027 journal titles from the 4,300+ titles
indexed in MEDLINE. Since NLM receives bibliographic data for 580 of these directly
from publishers, the actual number of titles that may be processed by MARS-2 is 1,447.

In Table 6.5 we show performance data for the month of February 2001 for 159 journal
issues containing 2,524 articles processed by MARS-2. This collection exhibited four
layout types. There were 101, 10, 37 and 11 journal issues in zone labeling types 10000,
10006, 12000, and 12200 respectively.

The data shows that 0.4% of the labeling errors is due to incorrect OCR output and 0.63%
is due to poor zoning (AZ). The error rate attributed to the AL module itself is 0.20%
when OCR and AZ are correct. The reason for the high error rate in the affiliation field is
that text in this field is small sized and are frequently italicized, both factors contributing
to poor detection by the OCR system. In overall performance, the AL module delivers an
accuracy of 98.77%.

Table 6.5 Automatic labeling performance
Error Type Label Field
 Title Author Affiliation Abstract Totals % of Error
Bad OCR 0 1 9 0 10 0.40
Automated Zoning (AZ) 2 8 6 0 16 0.63
Automated Labeling (AL) 1 3 1 0 5 0.20
Totals 3 12 16 0 31 1.23
% of Error 0.12 0.48 0.63 0 1.23

6.6 Ongoing research
As mentioned earlier, we used empirical methods to derive thresholds for the probability
of correct identification (PCI) for each label, such as 28% and 30% of special word lists
for PCI thresholds for author and affiliation. We plan to refine these figures by using
statistical data, i.e., create histograms of every word list collected from the journals
processed by MARS-2 for each label zone, and select thresholds based on these
histograms.

We are continually increasing the number of journal titles accommodated by MARS-2,
but we find that a number of these do not follow the relatively regular layout types that
the system can process at present. Figure 6.5 shows examples of these irregular layouts.
Figure 6.5(a) has the abstract to the left of the article title, Figure 6.5(b) has author and
affiliation to the right of the title, and Figure 6.5(c) has author to the left of the title, all
quite different from the “regular” layouts. One approach to dealing with these irregular
layouts is to develop a template matching algorithm based on the average font size and
the average top-left and bottom-right coordinates of all important zones. These features
will be stored in the database in a journal-specific manner. When a journal issue with
irregular layout is processed, the AL module will read the zone coordinates and the font
size of the text in the zone, and match them against the stored information.

 34

(a)
 (b)

 (c)

Figure 6.5 Examples of journals exhibiting irregular layout. (a) Abstract is located to the
left of the title. (b) Author and affiliation are located to the right of the title. (c) Author is
located to the left of the title.

 35

7 Automated reformatting

Following the labeling of the zoned text, the contents of each zone corresponds to the
article title, author names, affiliation, and abstract that we are seeking. However, the text
in the first three zones is rarely in the syntactic forms required by MEDLINE’s
conventions. The automated reformatting stage (Autoreformat) is designed to convert this
text to the desired formats to eliminate manual correction at the reconcile stage.

The reformatting of the title and author fields is implemented by predefined rules. Rules
for the title field implement retaining the capital case for the first letter of the first word,
and the de-capitalization of all the other words with the exception of acronyms. An
example: “Medical Management of AIDS Patients” becomes “Medical management of
AIDS patients,” as required in MEDLINE. Rules for author fields take into account
characters that delimit authors in a multiple-author list; tokens to be eliminated, such as
Ph.D., M.D.; tokens to be converted, such as II to 2nd; and “particles” to be retained, such
as "van." For example, the author name appearing on the printed page as Eric S. van
Bueron, Ph.D. becomes Van Bueron ES as required in MEDLINE.

Based on journal title and label (author or title), the reformatting module selects a subset
of rules from the inclusive set of all rules. The selected rule set and the OCR output text
are passed to the reformatting algorithm, and as each rule is applied, the OCR string is
modified. Our experiments before implementing this function in the production system
correctly reformatted more than 97% of the authors and titles from a test set of 1,857
processed articles. This performance may be expected to improve with the addition of
rules derived from production data.

The reformatting strategy for the affiliation field is quite different from the above. The
OCR data for an affiliation field could contain many affiliations, since each author may
have a different affiliation. This data is often difficult to reformat. One reason is that
only the affiliation of the first author is to be retained, in line with MEDLINE
conventions. Another reason is that the desired data is spread out over the entire field and
not contiguous. For example, in a 30 word affiliation zone, we may only want to retain
words 1-8, 12-14, and word 30. Our method involves probability matching of the OCR
output text to historical data of ~130,000 unique affiliations.

In the case of affiliations, in addition to the processing at the reformat stage, we attempt
to improve the recognition of affiliations by lexicon-based methods described in Section
8.

7.1 Reformatting the Author field

Reformatting the author field uses forward chaining rules-based deduction. The reformat
module can have many rules defined for a particular field. Each rule has a number of
requirements among which are that it must

• Be associated with a specific journal title (ISSN number);

 36

• Fall into one of eight categories as listed in Table 7.1. The categories are pre-defined
in the reformat module and are required to help in our conflict resolution strategy,
which in our case is specificity ordering. Whenever the conditions of one triggering
rule is a superset of another rule, the superset rule takes precedence in that it deals
with more specific situations. An example of this is shown later.

The example column in Table 7.1 shows the complete reformatted field. Note that a
single rule or category does not necessarily complete the reformatting, but may need to
be combined to achieve correct reformatting of the author field.

With the eight categories defined, the first step in using the reformat module for a given
ISSN is to define which rules are appropriate for a particular ISSN (journal title), since
the printed format varies widely among journals. As an example, in one journal the
authors appear as:

Glenn M Ford, MD, John Smith, PhD, and John Glover

This can be difficult to parse with a default set of rules, such as ', and' and ',' so that other
rules need to be defined. By defining, in the database, the rules for a specific journal title
over a specific period1 of time we can customize the rules to work for unusual or specific
cases.

The above example fails in the default rule set that only has ',' and ', and' as the author
delimiters because this would incorrectly identify 'MD' and 'PhD' as author names. To
accommodate this journal (and others like it) a high priority rule trigger list was created
for author delimiters such as ', MD', ', PhD', 'Mr.', 'Dr.', and other formal titles.

To avoid conflict among rules, each word chain is passed through all the categories
recursively until no more rules are triggered. As long as we have an antecedent with
consequences we continue to process the word chain. Using the forwarding chaining
method, when an “if statement” is observed to match an assertion, the antecedent (i.e., the
if statement) is satisfied. When the entire set of if statements are satisfied, the rule is
triggered. Each rule that is triggered establishes, in a working memory node, that it was
executed. During conflict resolution the reformat module decides which rules take
priority over others via specificity ordering. An example would be:

 Reduce category executes on 'John Smith II' and makes this 'J S II'
 Convert category executes 'John Smith II' and marks Smith as convert pre-word
and 'II' to '2nd'.

Our conflict resolution method specifies that the convert category is more specific than
the reduce category, thus keeping the word 'Smith' and '2nd'. In addition, the pre-word
convert flag in this particular example signals the conflict resolution manager to keep
'Smith', initialize 'J', and append '2nd '. This is possible because we have retained our

1 Journals often change formats over the years to accommodate new publishers or printers. Therefore the rules may
need to change even though the journal title remains the same.

 37

original text and the converted text. The text did not change and an integrated rule has
informed us that the word 'Smith' has remained unchanged, and by examining all words,
we deduce that this is the last name.

Example Before/After:
 Before - John Smith II
 After - Smith J 2nd

At the category level, the conflict resolution strategy is specificity ordering. There is also
a conflict resolution strategy within a given category: priority list rule ordering. Rules
within a given category are assigned a priority level to avoid conflicts. An example of
this is the following list of authors appearing on the printed page:

Glenn Ford, John Smith, and David Wells

We have the following author delimiter rules defined

 ',' and ', and'

However, the ',' is assigned priority 1, and the ', and' is assigned a higher priority 2. If
we did not give a higher priority to ', and' we could end up with 'and' as part of the author
name or create a null value.

In ground truth testing of the author reformat rules system we tested 1,857 authors from
OCR data. Of that number, 41 were reformatted incorrectly, for a 97.29% correction
rate. Of those 41, all 41 were missing rules defined for a given case. An example of a
missing rule is given in the case of an author field that reads:

Glenn M. Ford, Jr., John Smith.

By simply adding the rule [', Jr. ' author delimiter priority 2], and with no changes in
code, we achieved 100% correct reformatting in the test set.

7.2 Reformatting the Article Title field

The title field uses the same principles as in the author rules system, but requires fewer
rules or categories. Of the eight rule categories required for reformatting authors, only
three are needed to reformat titles: Uppercase, Lowercase and First Letter Upper.

7.3 Reformatting the Affiliation field

Institutional affiliations of the authors are reformatted by finding the best match between
the OCR text and a list of about 130,000 correctly formatted affiliations obtained from
the current production version of MARS. Simple string matching is not promising
because of the myriad arrangements in which affiliations can be expressed. Most journals

 38

show the affiliations of all authors, but by convention only the affiliation of the first
author is entered into MEDLINE. However, the text string corresponding to the first
affiliation may be scattered throughout the OCR text for the affiliation field. As an
example, when multiple authors are affiliated with different departments within the same
institution, the printed affiliation may be "Department A, Department B, Department C,
Institution XYZ," while the correct MEDLINE entry is "Department A, Institution XYZ."
The problem is further confounded by OCR errors, especially errors in detecting
superscripts and subscripts. To find a match, the entire OCR text of the affiliation field is
compared with every entry in the list of existing affiliations. A matching score for each of
the existing affiliations is calculated on the basis of partial token matches, distance
between token matches and customized soundex matching. The three highest scoring
candidates are presented to the Reconcile operator for selection. In preliminary tests, our
current version of affiliation field reformatting successfully identifies the correct
affiliation over 80% of the time when the affiliation is represented in the list. This
success rate is expected to improve with parallel efforts to reduce OCR errors and the
expansion of the list of affiliations from ongoing production data.

The first step is to read all these unique affiliations into memory and create a ternary
search tree56 for each affiliation, after which we create a soundex word list57 for each
affiliation.

When a zone is identified at the labeling stage as an affiliation field, the OCR data is first
processed through a partial-matching algorithm. Low confidence characters are replaced
with wildcards.

Example: Uniuersity. The 'u' is actually a 'v' but the OCR engine assigned it as a
'u' with a low confidence level. The partial match algorithm replaces the 'u' with a
'.' signifying that this character is a wildcard, and that any word in our search tree
that has the pattern Uni<any letter>ersity is considered to be a match.

The first step is to determine if a word in the affiliation zone matches one in the
affiliation list. Ignoring implemented performance optimizations2 we perform a partial
word match for all the words in the OCR list and build up a chain of those words that do
match. We also track distances between chains.

Consider the example of trying to find the affiliation "Department of Computer Science,
University of Maryland" in the affiliation list. The OCR input string might look like:
"Department of Computer Science, Department of Engineering, University of Maryland,
Department of Computer Science, Johns Hopkins University."

Since only the first affiliation is to be retained, there is considerable data that is
irrelevant. The problem is to retrieve just the data needed. By word chaining we can find
chains of words that exist in both the OCR text and in an affiliation zone and then use
these to derive weighted probabilities.

2 Optimizations such as: if the first word does not exist in the affiliation listing entry 1, go to entry 2 instead of looking
at every OCR word.

 39

In this example there is a chain of 4 words that match, followed by 3 that do not match,
followed by 3 more that match, and finally 7 that do not. Our probability algorithms
compute chain word matches and distances between chained words.

The next step in our process reverses the partial word match. The ~130,000 affiliations
are matched to the OCR affiliation.

Using the same example, "Department of Computer Science, University of Maryland"
has 7 words and all 7 occur in our OCR word list. It is likely there is another affiliation
entry that looks like "Department of Computer Science, University of Delaware". This
would give a high match of 6/7 words. By comparing and weighting word matches from
OCR to Corrected Affiliation and Corrected Affiliation to OCR, and using information
such as the number of words matched, total number of words, chain of words matched,
and chain of words unmatched, we arrive at a probability between 0 and 1. Note that
partial matching is used to help cover OCR errors that would ruin a literal string pattern
matching as the affiliation field is often in a smaller font and is likely to incur higher than
normal OCR error rates.

In addition to a partial match search algorithm, a soundex algorithm is used with the
addition of OCR substitution. For the example in which 'Uniuersity" has the 'u' as low
confidence, a substitution table developed lists of common OCR errors where a u == v
== y. All three letters are substituted in the low confidence 'u' position, and if a word
matches with a soundex hash it counts as a match.

In our ground truth testing with affiliation zones23, we found that if the OCR affiliation
exists in our affiliation list of 130,000 entries, the probability that the affiliation match is
the correct one is 88%. The affiliation reformat module picks the top 5 candidates which
are presented to the reconcile operator who can choose the correct one in the 5, or pick
the nearest match and type in any missing data, usually a room number, zip code or an
email address.

 40

7.4 Ongoing work

Current research focuses on the correct detection of superscripts in both the author and
affiliation fields to help improve reformatting algorithms. With this information
available, correct affiliation matching is expected to improve further.

Table 7.1 Categories of Author Reformat Rules
Category Description Example
Particle Name Many names contain “particles” forming

an integral part of the family name and
possibly bearing significance to the
family. A particle is retained as part of
the reformatted author name.

Etienne du Vivier becomes
du Vivier E, where ‘du’ is a
particle and is retained as is
and preceding the last name
Vivier. The first name is
initialized.

Compound Compound family names are preserved in
the form given and are often difficult to
detect. We use a mix of rules to deduce it
as a compound name. Most compound
names use a hyphen. Those that don't can
often use particle name rules to help
preserve the compound name.

L.G. Huis in 't Veld
becomes Huis in 't Veld LG
H.G. Huigbregtse-Meyerink
becomes HuigBregtse-
Meyerink HG

Convert Convert is a broad category that deals
with general requirements to convert one
pattern of text with another.

James A. Smith IV becomes
Smith JA 4th

Religious Religious titles include Mother, Sister,

Father, Brother. Names with surnames
are handled differently from those that
have no surnames.

Surname example:
Sister Mary Hilda Miley
becomes Miley MH

No-Surname example:
Sister May Hilda becomes
Mary Hilda Sister
For translated articles, e.g.,
from the French, Soeur
becomes Sister.

Reduce Reduction rules cover the elimination of
text with a single author name. It also
handles the Reduction of a person's given
name and marking of the Surname if
present.

Mr. John Smith becomes
Smith J

John Smith MD becomes
Smith J

Lowercase Some fields present all data uppercase.
This rule simply converts to lower case
all text that is uppercase.

JOHN SMITH becomes
Smith J

First Letter Title and Author at times will require that JOHN SMITH becomes

 41

Upper the first letter of a specific word be
uppercased, depending on other rules.

Smith J

Author
Delimiter

Many articles are by multiple authors
who contributed to the paper, such as this
one. This rule takes an OCR stream of
text and creates a word list, a chain of
words, and delimits where a particular
author begins and ends in the complete
chain of words.

Example1:
Glenn M Ford, John Smith
becomes:
Ford GM
Smith J
(, is the delimiter here)

Example 2:
Glenn M. Ford, John Smith,
and Susan O'Malley
becomes:
Ford GM
Smith J
O’Malley S
(', and' is the trigger, which
must precede in priority ','
as a triggered rule)

8 Lexical analysis to improve recognition

Two problems observed in production proved to be amenable to lexical analysis
techniques. The first problem was the excessive number of highlighted characters (which
were actually correct, but assigned a low confidence level by the OCR system, and hence
highlighted on the screen.) The second problem was the large number of character errors
in the detected affiliations field, a consequence of small font size and italic attribute in the
printed text in that field. Both problems placed an additional burden on the reconcile
operators to correct and verify the text. Two modules, developed to solve these problems
and reduce the operator labor, exploit the specialized vocabulary found in biomedical
journals. While the modules use different techniques, both employ specially selected
lexicons to modify the OCR text that is presented to the reconcile operators.

8.1 Lexical analysis to reduce highlighted words

8.1.1 Problem Statement

The Prime Recognition OCR system was selected for its high rate of correctly recognized
characters (high detection accuracy) and the very low number of incorrectly recognized
characters that were assigned a high confidence value (low false positives). Confidence
levels lie in a range between 1 and 9. Trading off the low percentage of false positives,
we found that over 90% of words containing low confidence characters are actually
correct, and that these characters should have been assigned a value of 9 by the OCR
system. To draw the reconcile operators’ attention to characters that may need correction,
all low confidence characters are highlighted in red on the reconcile workstation screen.

 42

When these are mostly correct, the operators are unnecessarily burdened by having to
examine and tab through them. Figure 8.1.1 shows a portion of the reconcile screen, with
characters highlighted incorrectly, i.e., with the original confidence values from the OCR
system.

Figure 8.1.1

In this example, part of the bitmapped image of the abstract field is displayed at the top of
the screen and the corresponding OCR output text is displayed at the bottom. Although
all of the OCR text is correct in this example, many characters are highlighted in red. Our
objective is to reduce this number of highlighted characters.

8.1.2 Approach

To reduce the number of (incorrectly) highlighted characters, we designed a module to
automatically increase the confidence level of characters detected correctly by the OCR
system. This module locates each word in the title and abstract fields that contains any
low confidence characters, checks for the word in a lexicon and, if the word is found,
changes the confidence of all its characters to 9, the highest value.

A study was undertaken to determine criteria (heuristic rules) for selecting words to be
checked and a lexicon suitable for biomedical journal articles. The key element of the
study was the creation of a ground truth dataset with which to compare lexicons and
lookup criteria. The ground truth data consisted of 5,692 OCR output words containing
low confidence characters extracted from journals already processed by the MARS
system. Each of these words was compared to the corresponding word in the final,
verified bibliographic record created by MARS to determine if the OCR word was
correct or not. Candidate lexicons and lookup criteria were evaluated with the goal of
removing low confidence values from ground truth words that were correct, while
retaining the low confidence values for those words that were not correct. Removing low
confidence values from correct words is the “benefit” of the module. Removing low
confidence values from incorrect words is the potential “cost” of the module.

 43

8.1.3 Experiments and results

Four candidate lexicons were created from various word lists maintained by the National
Library of Medicine with the expectation that these would contain a preponderance of the
biomedical words found in journal articles indexed in MEDLINE. The four lexicons and
their combinations were tested along with several lookup criteria involving word length
and character confidence levels. As expected, there was a tradeoff between benefit and
cost. A large lexicon and no lookup restrictions removed low confidence values from
over 90% of the OCR correct words (a 90% benefit), but also removed low confidence
values from over 60% of the OCR incorrect words (a 60% cost). To ensure the integrity
of the final text, it was considered on balance more important to minimize cost than to
maximize benefit.

Three combinations of lexicons and lookup criteria resulted in acceptable costs of less
than 0.5% and benefits greater than 40%. The final choice correctly removed low
confidence values from 46% of the correct OCR words and incorrectly removed low
confidence values from 0.4% of the incorrect OCR words. The selected lexicon consists
of unique words derived from the 1997 editions of NLM’s SPECIALIST Lexicon and
UMLS Metathesaurus. There are two levels of lookup criteria: 1) Words less than four
characters in length, or containing no alphabetic characters are not checked. 2) Words
less than six characters in length are not checked if any of the confidence values are less
than 7. All other words containing low confidence characters are compared to the
lexicon. If the word is found, the confidence values for all the characters are changed to
9, the highest value.

8.1.4 Implementation

The lexicon checking module was implemented at two phases of the project, the first for
the MARS-1 system and later for the MARS-2 system. For the MARS-1 system it was
implemented as a console application, written in C and developed in the Microsoft Visual
C++ development environment. The selected lexicon was compressed and organized into
a special dictionary format for fast searching using the commercially available software,
Visual Speller. In production, it was found that in the MARS-1 system, lexicon checking
reduced the highlighted words on average from approximately 14% of the words
presented for verification at the reconcile workstation to approximately 6.5%. This 50%
reduction in highlighted words resulted in a 4% increase in production rate, and was
reported in the literature21.

For the MARS-2 system another module was developed to implement the algorithm
described above. This module, a console application called Confidence Edit, is written in
C++ in the Microsoft Visual Studio development environment. As is the case for all
MARS-2 modules, it reads data records from the system database and creates new
records with edited (increased) confidence values. The lexicon is also stored in a database
table. When Confidence Edit starts, it loads the lexicon into a ternary search tree in
memory. The memory structure is compact, supports very fast lookup and presents no

 44

load on the database server. In the MARS-2 system, Confidence Edit has reduced
highlighted words in the abstract field from approximately 7.5% to approximately 4.3%,
using the same lexicon and lookup criteria as used by the original MARS-1 module.
Figure 8.2 illustrates the effect of processing by Confidence Edit on the same document
shown in Figure 8.1. Most of the characters are no longer highlighted.

Improvements made since Confidence Edit was placed in production included an addition
of 9,386 words to the lexicon. These were obtained by extracting all the words found in
the verified and corrected abstracts from over 27,000 journals (= 230,000 articles)
processed by MARS-1 and MARS-2 from May 1997 to April 2001, and using the
frequency of occurrence of each word during that period. New words occurring at a
frequency of 50 or more were added to the lexicon. Remaining words that occurred at
least twice were checked against nine electronic dictionaries that are available to NLM. If
the word was found in Dorland’s Medical Dictionary, in the Oxford Medical Dictionary,
or in at least six other dictionaries, it was added to the lexicon. When the new lexicon
was tested with the original ground truth data, a 4% improvement in benefit with no
increase in cost was measured. Similar statistics were found with a selected set of test
journals. Using the expanded lexicon, Confidence Edit has reduced the percentage of
highlighted words in the abstract field to approximately 3.5%, a modest improvement.

Figure 8.1.2

8.2 Lexical analysis to improve recognition of Affiliations

8.2.1 Problem Statement

As noted previously, although the commercial OCR system used by MARS performs
well in general, accuracy is often poor for small fonts or italic characters. In particular,
authors' affiliations frequently appear as small and/or italic characters, resulting in many
incorrect characters in the affiliation field. Consequently, the final check and correction

 45

of the affiliation field requires a disproportionate amount of human labor compared to
other fields extracted by our automated system. We observed that for about one in five
affiliations, there were so many highlighted words that the operators preferred to type the
entire affiliation rather than examine and correct each word. Not only was this time
consuming, but also represented a potential source of error in the completed bibliographic
record because fields manually entered at the reconcile workstation are not double-keyed
as at the edit stage. In this section we describe the experiments that led to the design and
implementation of the PatternMatch module that corrects words in the affiliation field.

8.2.2 Approach

Words that frequently appear in the affiliation field in biomedical journals are drawn
from a relatively small vocabulary that denote institutions and their divisions, such as
University and Department, the various branches of medicine and biology, such as
Pathology and Biophysics, and names of cities, states and countries. A study was
undertaken to determine if partial string matching or other matching techniques could
exploit the limited vocabulary to reliably find the correct word from a lexicon of
affiliation words given an OCR output word containing low confidence characters.

As in the previously described problem, a key component of this study was a ground truth
dataset to compare matching techniques and lexicons. Words containing low confidence
characters and the confidence values for all characters were extracted from the OCR
output text in the affiliations field of over five thousand journal articles processed by the
MARS system. Human operators selected the corresponding correct word from the
affiliation fields of the completed bibliographic records. After words that contained no
alphabetic characters were removed, the ground truth data consisted of over 20 thousand
triplets, where a triplet consists of an OCR output word, the confidence values for the
characters in the word and the correct word. Over 60% of the OCR words in the ground
truth set are correct.

Correct words and a count of their occurrences were extracted from the final, corrected
affiliation field of approximately 230,000 journal articles that had already been processed
by the MARS system. This set of journal articles is different from the set used to create
the ground truth data. There were 96,982 unique words of 2 or more characters that
occurred one or more times in this historical data. This list of words is the basis for
candidate lexicons of affiliation words.

8.2.3 Experiments

Six matching techniques42 were tested using the ground truth data and the complete
lexicon of affiliation words. The goal of testing was to find a technique to achieve a high
match rate, a low false positive rate and fast processing. Most of the techniques return
more than one potential match from a lexicon. If the correct word is among the list of
returned words, it is considered a match. If no words are returned, it is considered no
match. If words are returned, but none of them are the correct word, it is considered a
false positive. The six techniques tested are:

 46

Whole Word Matching. This technique compares the entire OCR output word with each
word in the lexicon. Either one word is returned, or none is. Because over 60% of the
OCR words in the ground truth set are correct, the match rate was reasonably high.
However, when using the complete lexicon, the rate of false positives was also high
because a single OCR error or omission can result in a word that is found in the lexicon.
For example, several non-English variations of the word University are included in the
lexicon, including Universit, Universita, Universitaire, Universitat, and Universite. If the
OCR word is "Universit", whole word matching will find "Universit" even though the
actual word was "University" or one of its other variations.

Partial Matching with wild card letters. In this technique, a match is sought with the
"wild card" character '.' (a period) substituted for one or more of the low confidence
characters in the OCR output word. Thus Partial Matching can find words in the
reference dictionary where the OCR word has one or more character errors, but whose
length is correct. For example, if we have an OCR word, Deparlmemt, with confidence
values, 9699878956, a match would be found for Depar.me.t or D.par.me.t, but not for
D.parlme.t or D.par.memt. For the same reasons as for Whole Word Matching, the false
positive rate was high. In addition, the method does not find a correct match if the
number of characters in the OCR word is incorrect.

Near-neighbor Matching. This technique finds all of the words in the lexicon that are
within a given Hamming distance of the OCR word. Hamming distance is a measure of
the difference between two finite strings of characters, expressed as the number of
characters that need to be changed to obtain one from the other. For example,
“Deparlmemt” and “Department” have a Hamming distance of two, whereas "Butter" and
"ladder" have a Hamming distance of four. A high match rate could be achieved by
specifying a large Hamming distance, but this also resulted in a high false positive rate.
Near-neighbor Matching also fared poorly when the OCR word length was incorrect.

Soundex Matching. Soundex matching finds words in the lexicon that are phonetically
similar to the OCR output word. This technique proved to have a number of difficulties
in overcoming character substitutions caused by the OCR system. For example, the word
Department would often be interpreted as Deparlment by the OCR engine. These two
words are phonetically quite different since the letters ‘t’ and ‘l’ do not have similar
sounds, and the correct word, Department, would not be returned.

Bi-gram Search. This technique was adapted from software developed inhouse to suggest
spelling alternatives for online Library clients. A bi-gram is a pair of adjacent characters
in the word being analyzed. For example, Department contains nine bi-grams: De, ep, pa,
ar, rt, tm, me, en, nt. For bi-gram searches, each word in the lexicon is searched for all
possible bi-grams in the OCR word. Lexicon words containing multiple bi-grams in the
OCR word are possible matches. Long OCR words can result in a large number of
possible matches. The bi-gram prunes out unlikely candidate words through an algorithm
that considers lexicon word length, OCR word length and the number of matching bi-
grams. Bi-gram searches were less sensitive to OCR word length than some other

 47

techniques and resulted in a relatively high match rate. The false positive rate was also
high, because one or two incorrect characters in the OCR word could result in many
incorrect possible matches.

Probability Matching. Probability Matching43 was developed inhouse specifically to
address the problem of poor OCR recognition of words in the affiliation field. The first
step of this technique compares the OCR output word to every word in the lexicon using
an edit distance based on OCR character substitution frequencies, and assigns a
confidence value to each lexicon word based on the probability that the OCR word will
be produced when the true word is the lexicon word. Each word receives a score that is
the product of the calculated confidence and the frequency of occurrence in the lexicon.
Words are then ranked according to this score, and a specified number of highest-ranking
words are returned.

Probability Matching achieved the highest match rate, lowest false positive rate, and
slowest processing time of the techniques tested. Because it compares the OCR word
with every word in the lexicon, it can take up to 1 second per word depending on word
length, computer speed and lexicon size, with larger lexicons producing better matching
and slower processing.

Initial experiments suggested further study toward an acceptable multi-stage process in
which "easy" words are matched reliably by a faster process, and the remaining words are
matched using Probability Matching. Combinations of matching techniques and lexicon
sizes were tested in an effort to reduce the false positive rate and the processing time
while maintaining the high match rates that had been observed.

8.2.4 Results

The final choice was a cascaded matching process that capitalizes on the fact that over
half of the OCR words are correct. It was found that trimming the lexicon to include only
the most frequently occurring words significantly reduced the false positive rate of Whole
Word Matching. Probability Matching with a larger lexicon for words not found by
Whole Word Matching then yielded acceptable overall results with less impact on
average processing time.

The first step in our cascade matching is Whole Word Matching with a lexicon of 1,948
affiliation words with an occurrence of 100 or more in the historical data. Step 1 correctly
matches 45% of the ground truth data, with a false positive rate of 1.4%. The second step
is Probability Matching with the entire lexicon of 43,030 affiliation words with an
occurrence of 2 or more in the historical data. Step 2 correctly matches 77% of the
remaining 55% of the ground truth data, with a false positive rate of 16.7%. The overall
performance of cascade matching was a match rate of 86% (with the correct word ranked
highest for 81% of the words), a false positive rate of 11% and an average processing
time of approximately 250 ms on a 500 MHz Pentium III. The still high false positive
rate has implications for the way that potential substitute words are presented to the
reconcile operator.

 48

8.2.5 Implementation

Word matching for low confidence words in the affiliation field was implemented
through two software development efforts42. A separate console program called
PatternMatch was developed to automatically parse low confidence OCR words from the
identified affiliation field, submit the words to the cascade matching algorithm for
possible correct words, and, if any words are returned, insert those words into the
affiliation text following the original OCR word and specially tagged for processing by
the Reconcile workstation. PatternMatch was developed in C++ in the Microsoft Visual
Studio development environment. In addition to the MARS database for input and output
records, PatternMatch requires three files: the large and small lexicons and the character
substitution frequency matrix used by Probability Matching.

Additional software was developed for reconcile to support the interpretation of the
special tags placed in the affiliation text by PatternMatch and the display of the word
choices to the reconcile operator. An example of the reconcile application screen is
shown in Figure 8.2.1. In this instance, the original OCR output word containing low
confidence characters, seen in the lower half of the figure, is UniversiO. The upper half
of the screen displays the scanned image with a red box around the image corresponding
to the word highlighted in the lower half of the screen. In this example the word matching
process found 10 words that could possibly match UniversiO. These are presented to the
operator in a drop down list. The first word in the list (UniversiO) is the original OCR
word, the default highlighted word (University) is the highest ranked word match, the
third word in the list (Universi) is the second highest ranked word match, and so on. The
reconcile operator has the option to hit escape and leave the original word highlighted, hit
return to substitute the original OCR word with the highest ranked word,, or select any of
the words in the list using the mouse or keyboard and hit return. The ease of selection is
relative to the need for correction: selecting the original OCR word or the first candidate
word in the match list is accomplished with a single keystroke. These cases account for
approximately 90% of the words containing low confidence characters.

PatternMatch was placed in operation in December 2000, and the reconcile software to
support word selection was introduced in February 2001. In the first four months of
operation, operators selected the first match choice 80.8% percent of the time, selected
one of the other match choices 8.8% of the time, selected no word from the list 6.7% of
the time, and the original OCR word 3.7% of the time.

 49

Figure 8.2.1 PatternMatch output for reconcile operator

8.2.6 Incremental Improvements

Two modifications to the subsystem for affiliation word matching were implemented in
the summer of 2001. A new compilation of affiliation words was generated from a larger
set of verified MARS records to generate more complete lexicons for the PatternMatch
program. In addition, PatternMatch was modified to more accurately handle words
containing diacritics.

9 Operator workstation design

In this section we describe the three principal types of operator workstations, for
scanning, editing and reconciling. In all cases, off-the-shelf hardware is used.

9.1 Scan workstation

The scanners in production are mid-range devices manufactured by Fujitsu or Ricoh.
These devices are controlled by an inhouse application software called Scan. The primary
task for this software is to enable an operator to scan a page of an article to produce a
TIFF image, and insert, delete or replace a page image. This software also allows the

 50

operator to initiate the workflow for a journal issue (i.e., by entering the MRI number to
identify the journal issue to be processed) in case the first stage in MARS, CheckIn, fails
or a supervisor is unable to initiate that process for any reason. This is a feature that
contributes to overall system reliability. In addition, Scan requires an operator to check
the quality of the image resulting from scanning; the operator may zoom into any part of
the image to ensure that the page has been scanned correctly. Finally, in case a journal is
sent back from downstream processes for rescanning, the Scan software identifies the
pages to be rescanned for the operator.

The Scan software is written in C++ and compiled in Microsoft Visual C++ (6.0). The
GUI design is based on the AppWizard in MFC, using the option of Single Document
Interface (SDI). The parallel process is not required since the operator works on only one
page in a journal issue at a time.

The software uses ActiveX to control the scanner through a Kofax controller. The TIFF
images are displayed, magnified, rotated and scaled through another ActiveX control
provided by Eastman Kodak Image software. Communications with the MARS database
are accomplished through RogueWave functions. These are shown in the schematic
below.

Figure 9.1.1 Scan software schematic

The Scan program implements real-time communications between the scanner and the
MARS database. Should this communication fail, Scan alerts the operator immediately.
Scan creates records in the WIP, Page and ProcessTime tables in the database. In the WIP
table, it records the journal issue identification (the MRI number barcode scanned in by
the operator), time the record is archived, time the journal issue is scanned, location of
the TIFF images, total number of images in the issue, the operator ID, the type of
scanner, and other data. In the Page table, it records a unique number identifying each
page (PageID), scan density (dpi), the height and width of the page in pixels, and whether
the scanned page is the first or second page of the article (the second page is scanned
only if the abstract continues on to this page). In the ProcessTime table, it records the

KoFax
ActiveX
Control

Scan Main
Program

Kodak Image
ActiveX Control
Displays TIFF
Image Files

TIFF
image
files

Table Library System
Registry

MFC

RogueWave Library

Microsoft SQL

MARSDB

 51

start and end time for scanning a page, and whether scanning is mouse/keyboard driven
or speech controlled.

The Scan software has a quality control (QC) function requiring the operator to view the
image before exiting the application. To give the operator a quick indication of quality,
we have provided a skew detection capability, skew being a factor in poor image quality:
the operator is alerted if the skew exceeds a preset threshold, as shown in Figure 9.1.2.

Figure 9.1.2 An alert to the operator (left); the actual image (right).

The workstation using the Scan software may be controlled conventionally by
mouse/keyboard as well as by speech recognition. The design of the speech-enabled
workstation, and the tradeoffs considered among different speech recognition approaches,
are reported in the literature58.

9.2 Edit workstation

While our goal is to automate data extraction from the scanned journals as much as
possible, at any point in the life cycle of the MARS system there will be a need for some
manual data entry for the fields not automatically extracted. One reason is that some data
appears in pages other than the first page of the article, the only page that is usually
scanned. (If the abstract continues on to the article’s second page, this page is also
scanned, but this occurs infrequently.) Examples are: NIH grant numbers and databank
accession numbers. Another reason is that the OCR system does not reliably detect very
small or italicized characters, such as in the affiliation field; in this situation, the edit
operator might choose to simply type in the text. Furthermore, the MARS-2 algorithms
handle only the “compliant” journals, while a significant, though decreasing, portion of
the journal collection remains noncompliant. The edit workstation is designed for manual
data entry, the name reflecting the combined actions of the editor and keyboard operator
in the MARS-1 system.

 52

The edit workstation takes advantage of upstream processes (OCR, autozoning and
autolabeling), provides an interface for data entry, and allows the operator to correct
errors in zoning and labeling before passing the data on to subsequent processes.

In order to minimize human errors at the edit stage, data entry is double keyed, i.e., two
different operators produce two versions of the data for the same article: one version in
Edit_One, another version in Edit_Two. The two versions of the data are differenced by a
daemon process called Diff so that the reconcile operator may clearly detect any
differences and select the correct version.

As shown in the workstation GUI in Figure 9.2.1, the edit operator is required to enter the
pagination and language fields, the latter set to English as the default option. All other
fields are optional, entered only if necessary. The left window of the workstation screen
displays the TIFF page image including the (color coded) results of autozoning and
autolabeling performed by upstream processes, so that the operator can identify and
correct an incorrectly labeled zone, to ensure that errors do not propagate to downstream
processes such as Confidence Edit, Reformat and Reconcile.

In addition to showing the zones and labels automatically done by daemons, the system
also displays the percentage of high confidence OCR output characters (confidence level
of 9) for each zone. These items of information displayed on the bitmapped image serve
as a DoItAgain feature, enabling the edit operator to request the Admin operator to order
redoing earlier processes such as Scan, OCR, zoning and labeling which may have
produced errors resulting from poor scanning, unacceptably high misinterpretation by the
OCR system, or incorrect zoning or labeling.

 53

Figure 9.2.1 Edit workstation GUI

The operator may also defer the process, or set an error flag at any time as needed,
providing the flexibility for trouble-shooting and production scheduling.

The Edit software, running under Windows 2000, is developed using Visual C++ 6.0 and
MFC 6.0. It uses Kodak Imaging Professional 2.5 to handle all image related
functionality, and RogueWave Tools and DBTools 3.20 to implement client
communications with the SQL database server.

The Edit software is equipped to assist in system performance evaluation, by
automatically recording the time taken by the operator to key in data (entered in the
PerformanceData table in the database), and the processing time (entered in the
ProcessTime table). It also incorporates error handling components to automatically
detect and handle database and developer defined errors. When an error condition is
triggered, the Edit software warns the operator and allows the entry of more information.
This information is automatically recorded and handled by the Admin module.

The design of this workstation also seeks to minimize delays caused by data and image
transfer over the network. For example, after completing data entry for one of the articles

 54

in a journal issue, the operator clicks the page tab to go to the next TIFF image. At this
point, the data for the current article must be written to the database, and the information
related to the next article must be retrieved from the database and its page image from the
file server for display on the screen. The database I/O and image retrieval from the file
server and its transfer over the LAN are all time consuming. To reduce the effective delay
perceived by the operator, the Edit software reads the database information related to all
of the articles in a particular journal issue into the workstation memory at the beginning
of the process, so that this data is available immediately as the operator moves from one
article to the next.

9.3 Reconcile workstation

The purpose of the reconcile workstation is to enable an operator to check the accuracy of
the bibliographic data extracted by the automated processes, as well as that entered
manually by the Edit operator. Any errors are corrected at this stage before the citation is
uploaded to the DCMS database.

The general view in the reconcile workstation’s GUI gives an overall picture of the
bibliographic data captured (Figure 9.3.1). Prior to the operator verifying the contents of
the bibliographic fields, the field windows are highlighted by background color: green for
fields created by the automated processes, cyan for those entered manually, yellow for
those created by combining the outputs of both automated and manual processes, and red
if no text appears in the window. In the example shown, the windows for NIH Grant
Numbers and Databank Accession Numbers appear in red, since these data were not
entered by the edit operator earlier in the workflow. (These fields are not captured
automatically since they could appear anywhere in the article and not just on the scanned
page.) Once the operator verifies the fields, the windows turn white, as shown for
Pagination and Language in this example.

 55

Figure 9.3.1 General view for all bibliographic fields in an article.

 56

The GUI for this workstation also gives a split view (Figure 9.3.2) displaying both the
image and the corresponding text to allow the operator to verify the text against the
scanned image. Low confidence characters are highlighted in red on the text to draw the
operator’s attention to them.

Figure 9.3.2 Split view shows both the bitmapped image and corresponding text. Low
confidence characters are highlighted in the text window.

The reconcile workstation provides the operator several additional functions: the operator
may redefine a field labeled incorrectly; activate a standalone OCR system to extract the
field contents through the image or, alternatively, type in the text; if a page image is
missing or duplicated, the operator may insert the missing page, or delete a duplicate; and
if there are ‘invalid’ characters, the Reconcile software will convert them to the form
required in MEDLINE.

Many of the functions in the reconcile workstation are provided by a program we
developed called Character Verification, a module that allows the reconcile operator to
view the bitmapped document images and to verify the text in all the fields, both entered
by the edit operator, and that from the automated processes. It is an ActiveX control
embedded in the Reconcile software. It is based on two ActiveX controls, the Eastman
Kodak Image ActiveX Control and Microsoft’s Rich Text Editor ActiveX control.

 57

Character Verification allows the operator to view the image and perform manipulations
such as rotation, and zooming in or out. Also a bounding box shows the area on the
image that corresponds to the text that the operator is focusing on. The design of this
functionality is based on Eastman Kodak Image Control.

Character Verification also allows the operator to edit the field contents. The design of
this editor is based on the Microsoft Rich Text Editor and is derived from its heavily used
functions such as copy, cut, paste, search and replace. The software can also relate the
position of the text characters to the corresponding ones in the image, provide confidence
levels, and allow the operator to enter diacritical marks, Greek letters, mathematical
signs, change the first character of a selected word to upper case while leaving the rest in
lower case, convert case, and complete words in the affiliation field from a partial output.

Character Verification and the Reconcile main program communicate via methods and
events. Reconcile sets or gets the methods to instruct Character Verification. In turn,
Character Verification fires events back to Reconcile to provide the information.

Get or set properties
Call methods

Fire events

Figure 9.3.3 Reconcile main program communicating with Character Verification.

Character Verification retrieves the OCR output for every article (bibliographic) field,
including text contents (character codes), confidence levels and character coordinates,
from the MARS database, and the images from a file server. Keyed-in characters are
assumed to be at the highest level of confidence and have no coordinates for their
location in image.

Figure 9.3.4 Character Verification displays label text, confidence and character position.

Reconcile
Main Program

Character
Verification

Unverified
article field

Reconcile Split View –
Character Verification

Validated and
proofed article
field

Image

Article field

Confidence Level

Position

Image File
Server

Database

 58

Character Verification also provides the results of the PatternMatch program to the
operator in a word list to choose from. An example is given below showing the operator
optional words to select in an affiliation field.

Figure 9.3.5 Operator can select alternative words in an affiliation field.

10 Production supervision and control tools

In a production system the management and control of the workflow is exercised by the
facility supervisors who need to transmit necessary information to the workstation
operators. Observing that some of this information flow could be automated, tools were
developed to assist in this process. The objective is to meet the supervisors’
administrative and management requirements while realizing productivity gains.
CheckIn, Admin and CrashPatrol are such tools.

 59

10.1 CheckIn

The first stage in the MARS workflow is CheckIn44, immediately followed by Scan.
CheckIn’s role is to collect and organize information necessary to track the physical
journal issues from their arrival at the MARS production facility until processing is
completed. Prior to the development of this module, the facility supervisor manually
researched key information related to the journal issue to be processed, hand wrote the
information on a paper form, and attached the form to the issue before sending it on its
way to the various operator workstations. CheckIn exploits the fact that most of this
information is already in the DCMS (Data Creation Maintenance System) and the MARS
databases, and may be automatically extracted from these.

The process is as follows: as a journal issue arrives at the production facility, the
supervisor wands the NLM-applied barcode to read the “MRI” number that uniquely
identifies the issue. CheckIn sends an on-demand query via network to the DCMS
database at NLM, which returns data about the journal title (such as ISSN and journal
name) and the particular issue (such as volume number, issue number, and cover date of
publication). A concurrent query to the MARS database at the facility retrieves some
other items of related information, namely, the journal’s priority and notes about how it
should be processed.

The retrieved information is used for two purposes:

1) It is printed on a cover page (Figure 10.1.1) that the supervisor paperclips to the
journal issue. This information helps keep track of the issue as it moves through the
facility and provides guidelines and special instructions for the operators. The cover
page is subsequently retained in a manager’s notebook as supplemental information.

2) The information, after any adjustment by the supervisor (e.g., change the priority for
handling the journal, or to add special instructions for the operators), is stored in the
MARS database, initializing the workflow for this issue. The data then flows to the
Scan and Edit stations, where the operators do not have to type or pick it manually.

Design and Architecture

The design of CheckIn evolved from the rapid prototyping of several dialog-box-based
applications built in VC++/MFC. CheckIn’s main dialog window looks like the printed
cover page of Figure 10.1.1, minus the grid. CheckIn is a manned application, rather than
a daemon, because the “Notes” field, for instance, may need to be edited to pass on
supplemental, transient information to the MARS operators.

 60

Figure 10.1.1 Cover Sheet. Shown reformatted for conciseness from its actual full-page
size. The grid at the bottom is penciled in by each task’s operator as the attached
physical journal is relinquished. Citational information above the grid, prior to the
development of CheckIn, was entered by hand.

Activated by the supervisor, CheckIn passes a journal’s MRI as a URL parameter to the
DCMS website. Live data is fetched from there in XML format, then parsed using
Microsoft’s MSXML implementation of the standard XML DOM object45,47 model.
DOM is a good choice for small XML files (as here) since the entire DOM parse tree
resides in memory. The data format is defined by the “NLM MEDLINE” DTD46. While
neither this DTD nor the DCMS web service (i.e., that delivers XML-over-HTTP) were
specifically designed for MARS, they offer vital data that MARS needs: ISSN, journal
title (in full and short forms), cover date, volume and issue number. CheckIn also
retrieves the remaining useful data that is not available with this DTD (e.g., initial/default
values for priority, or for in-house “notes” to operators) from the MARS database.

In addition to reading from the MARS database, CheckIn also writes data to it, as
purpose (2) suggests. Such database access is through client-side middleware. The
original MARS implementation deployed a C++ class library for this: RogueWave’s
DBTools++. But this has the disadvantage of on-going per-seat costs. The design of
CheckIn pioneered our use of Microsoft’s ActiveX Data Objects (ADO) instead, a more
economical option in the long run.

Besides the addition of role (2) functionality discussed above, CheckIn includes a
“Lookup Wizard”, to enable the operator to look up a journal from the MARS database
by either journal title or ISSN, in case of the following difficulties with retrieving
information from DCMS:

1) No response, or an erroneous response, from the DCMS web service;
2) The requested MRI is unknown to DCMS;
3) The returned information is missing an ISSN;

Mars II Journal Cover Sheet
Printed Monday, March 29, 2001, at 12:41 PM, by glennp on machine VAPID with the “Check In” button

Journal MRI: NLM018430405
Journal Title: Annals of the Rheumatic Diseases
ISSN: 0003-4967
Volume: 59 Issue: 12
Cover Date: 2000 Dec Priority: Normal
Notes: -

 Task Initials Date Completed Image/Page Numbers
 Scan
 Edit 1
 Edit 2
 Reconcile

 61

4) The returned ISSN is unknown to MARS.

Case 3 can occur because, in the DCMS database, unlike in MARS, ISSN is neither a key
nor a required field. (If a journal really has no ISSN, the facility supervisor enters a
placeholder number.) For case 3, CheckIn automatically tries to match the fetched
journal title against those in the MARS database. For case 4, the user is asked if such a
match attempt by title is desirable.

For all cases, the fallback is Lookup Wizard invocation. The wizard first explains the
problem and allows the user to ask for a search by ISSN or title. The second step
presents an ordered scrollable list of all journals known to MARS, and an entry field pre-
initialized if possible. As the user edits the entry field, automatic prefix matching occurs
against the list, so that the field may be completed with minimal typing.
Performance in production
CheckIn’s operation has been successful. Each day, the supervisor uses it to check in
about 40 journals with at least 600 articles. Prior to CheckIn, the information in the cover
pages was hand researched and written, a process that took over an hour. It now takes
under 15 minutes. We expect to see additional labor savings upon completion of the
rollout of data deposition by CheckIn and its pick up by Scan and Edit.

Next steps
Planned improvements to CheckIn include:

o Enabling the supervisor to add a new journal title and its ISSN to the MARS
database at CheckIn, without requiring intervention by the MARS database
administrator as at present;

o “Instrumenting” the module so that its performance can be quantitatively
assessed;

o Contributing to a projected MARS resource management system, that will replace
the cover sheets with a paperless system.

10.2 Admin workstation

When an error occurs, i.e., when a particular journal issue or any of its individual article
pages encounter a problem at one of the stages in the workflow, a supervisor
(“administrator”) has to decide on a corrective step. The Admin workstation software,
written in Visual C++ (6.0), allows the supervisor to check on the status of a journal issue
in the workflow, and in the event of an error, to request that a process be repeated for a
particular journal issue or a page. Every process in the workflow records an error in the
ErrorReport table in the MARS database and the process stage is set to 9998 (error stage)
in the WorkInProgress (WIP) table. The supervisor uses the Admin module to check the
error and decides which MARS process needs to be redone. He/she sends the journal
issue back by changing ProcessID and ProcessStage in the WIP table, and switching the
integer bits of the PageMasks. The supervisor may also request a particular operator to
redo a process by changing the OperatorID.

 62

The Admin application is designed to look like Windows Explorer with split windows
containing four views, one on the left, and on the right three views which may be
switched back and forth for convenience. On the left, the Tree View displays the journal
issue affected (MRI number) and its pages. The three views on the right window include:
the Error Info View displaying the error information; the List View that opens two other
views (List Info and Report Info) to display detailed information pertaining to the journal
issue and the individual pages affected; and the Mask View displaying the current page
mask settings of the individual pages.

Admin is also designed to adapt to changes in the MARS workflow. Since the workflow
may be changed by modifying the ProcessQueue table in the MARS database, Admin
builds the data presented on its GUI in line with the new workflow.

Figure 10.2.1 Tree View showing the journal issues affected (Error
MRIs) and those inspected.

Figure 10.2.2 Error Info View on the right displays the information on journal issues or
individual pages

 63

 Figure 10.2.3 List Info view

 Figure 10.2.4 Report Info view

 64

 Figure 10.2.5 Mask View displays Page Mask. The masks can be set up so the
32-bit integer is set for reprocessing

The functionality of Admin is as follows. The supervisor selects a particular journal issue
(MRI) on the tree view, and information related to that MRI is displayed: the PageID,
PageSequence, NumberZone, FirstPage are displayed on the first view, LabelID,
LabelField, LabelType, Confidence (if page is selected on the tree view.)

The Information View displays MRI, current process, current stage, module message,
user message, error information, and error solution. The new process and new stage are
displayed in a combo box to assist the supervisor to choose a new process for
reprocessing the journal issue.

The supervisor can use the Mask View to set up the PageMask by clicking on the Select
Solution button after he/she sets the new process mask or a new process id or process
stage. A dialog box appears to allow the supervisor to choose the pages that need
reprocessing. The Mask View shows which process(es) failed and requires to be redone.
The information pertaining to the new choices will be saved to the database for
reprocessing.

Admin is designed so that a separate thread checks the ErrorReport table every 3 minutes
for a new record. If one exists, it will be added to the tree automatically. Also, a blinking
red light indicates there is at least one error to be handled.

Other actions the supervisor can take include:

 65

• Double clicking on the MRI in the tree view activates an embedded Label Browser
that can be used for browsing the data.

• Double clicking on Page in the tree view results in displaying the image of that page
on a modeless dialog box, so the supervisor may move from page to page to load the
corresponding image.

• Double clicking on the Label (bibliographic field) in the list view results in a display
of the text in that label in a modeless dialog box.

• Using the Transfer Data/Object dialog box, the supervisor can transfer data from one
server to another.

• Using the System Type Check dialog box, the supervisor can check whether the
journal issue is compliant (amenable to automated processing) or not.

A future functionality will be an audit trail to keep track of all the actions of supervisors
when using the Admin system.

10.3 Crash Patrol

Since any downtime in a production system is a serious matter and needs to be
minimized, it is important to have an automated alert in case of failures. The purpose of
the Crash Patrol subsystem, implemented as a multi-threaded Windows C++ application,
is to alert the supervisors and technical support personnel automatically in case a MARS
daemon fails. This module is designed to give a quick warning of the crash of an
executable program, and complements other database-centered techniques that also detect
deadlock or inactivity, though more slowly. When such a crash occurs, Crash Patrol
sounds an audible alarm through the facility’s speaker system. The alarm volume may be
customized for each process that is monitored. Remote notification by email is also
possible. To use this feature, the current implementation requires installation of the
Windows NT/2000 SMTP Server, though for the future, a version that handles SMTP
more independently might better allay security concerns.

Crash Patrol also has the capability to restart crashed programs, although most of the
MARS daemons have been programmed to restart without manual intervention. If restart
is requested, Crash Patrol will sound an alarm only if the restart fails.

 66

Left window. The main window of this dialog application has, at the top, a snooze bar
to turn off the alarm sound. A button (Alarm Reason) offers textual information about
why the alarm sounded, although with experience this may be quickly elicited from the
lower “Processes to Watch” window. The top list pane shows all processes running on
the machine, similar to the Task Manager in Windows NT/2000; system processes can be
screened out. This pane is initialized at startup and then refreshed either manually or at a
desired frequency. Substring search within this list is the detection mechanism. The
lower pane shows seven MARS daemons. For each, a traffic light is either green if it is
running, red if it has stopped, or gray if it does not matter (indicated by toggling
“Watch?” to “No”). Toggling of the Yes/No columns is done with buttons at the bottom.

Right window. This window appears on pressing the “Details” button in the main
window. The example shown here is while exercising the alarm not with the real Pattern
Match, but with Notepad. The restart command line shown has bad-text “notepadx.exe”
(instead of, say, “notepad.exe”) to test failure to successfully restart the process, leading
to alarm triggering.

11 System performance evaluation

Assessing the performance of the MARS system is an important goal, not only to
evaluate the efficiency of its constituent modules, but also to locate potential bottlenecks.
In addition, since we seek the best way to create MEDLINE bibliographic records, it is
important to compare the productivity (e.g., labor hours per unit record) of the MARS
systems, both versions 1 and 2, against each other, as well as with that of the manual

 67

keyboarding operation done under contract. Key questions posed as a starting point for
performance evaluation are listed as follows:

1. How long does it take for a bibliographic record to be completed?
2. What is the time taken by each manual and automatic process for one record?
3. What is the time taken by each manual and automatic process for one day's

workload?
4. What is the time taken to enter each field in Edit?
5. What is the error rate of the zoning, labeling and reformat modules?
6. What is the utilization rate of MARS-2 server processes and workstations?
7. How long does data wait to begin processing by each of the daemon process?

I.e., how long is it in a queue waiting to begin work?
8. How often is a citation re-processed? What are the most common reasons?
9. What is the overall cost (in labor-hours) for the MARS-2 operation as

compared to MARS-1 and the keyboard operation?

These questions are addressed quantitatively by instrumenting the system and analyzing
the data recorded, these mainly being event counts and time data. Instrumentation is
implemented by two C++ classes written to record such data: ProcessTime which records
times and PerformanceData that records statistics generated in a MARS process.

11.1 Process performance analysis

The instrumentation data yields information on the processes, both automatic and
manual, at different levels of granularity. Figure 11.1 shows the average time taken by
each process to complete its task for one bibliographic record (citation) in July 2001.
Predictably, the manual processes of scanning, editing and reconciling take much longer
than the automated ones. An explanation of the terminology: Edit_First and Edit_Second
stand for the first and second Edit operator; Prod is the inhouse-developed daemon that
controls the OCR system, hence equivalent to the OCR action; ZoneCzar combines the
actions of automated zoning and labeling.

 68

Figure 11.1

Instrumentation data for a breakdown of some of these processes into their constituents
appear in Figures 11.2 and 11.3. In Figure 11.2 we find the actual process of scanning a
page (“append”) to take a relatively short time, but inserting a missing page after the fact
and the entry of a new journal issue (“New MRI”) to take much longer. This latter task,
found time consuming, was the rationale behind the development of the new CheckIn
module, which eliminates this function in the scanning operation.

The actual workload for these time consuming processes is not high, because they do not
occur frequently. For example, as shown in Figure 11.3, the actual burden of inserting
pages is very low, since this operation is performed rarely.

Figure 11.4 shows the average time taken for the Edit operator to enter the fields not
automatically extracted. Only the data for the first Edit operator is shown, since the data
for the second operator is approximately the same. In this figure, we show entries for
those fields that are automatically extracted in compliant journals, because we are
accommodating non-compliant ones also. Furthermore, even for compliant journals, there
are pages that are not processed by the automatic modules (e.g., letters to the editor,
editorials) requiring the Edit operator to key in the relevant data. The figure, however,
indicates opportunities for further automation.

 69

Figure 11.2

 70

Figure 11.3

Figure 11.4

 71

Since we keep track of operator names in the database, we also offer the supervisor the
option of comparing their relative effectiveness, as shown in Figure 11.5 for scanning and
Figure 11.6 for editing.

Figure 11.5

 72

Figure 11.6

11.2 Comparison of the three data entry systems

Here we compare the two systems, MARS-1 and MARS-2, and the manual keyboarding
operation on the basis of a workload of 600 completed bibliographic records per day, the
average workday load for all of these approaches. The table lists the average number of
seconds per page for each system and the number of minutes per 600 records, and shown
in a chart in Figure 11.7. It can be seen that MARS-2, by eliminating many of the manual
functions in MARS-1, is a considerable improvement, and that both are far more efficient
than the manual keyboarding operation. To produce 600 records, MARS-2 requires 61
hours of labor per day, while the keyboarding requires 246 hours. In comparison with the
keyboarding operation, MARS-2 therefore saves 185 direct labor-hours per day or 51,800
labor-hours per year (based on a year of 280 work days).

 KeyBd MARS I MARS IIKeybd MARS I MARS II
Category Sec/Page Sec/Page Sec/Page Min/600 Min/600 Min/600

Scan NA 71 30 NA 706 300
Edit NA 178 133 NA 1784 1330
Reconcile NA 388 202 NA 3885 2020
Total 1475 637 365 14750 6374 3650

 73

Figure 11.7

Comparison of Data Capture Systems used by NLM

0

2000

4000

6000

8000

10000

12000

14000

16000

Keybd MARS I MARS II

Data Capture System

Minutes/600
Citations Minutes

 74

12 Next tasks

In individual sections we have outlined tasks that will improve the automatic and manual
processes in MARS. In addition, we seek to initiate new projects that go beyond such
incremental improvements. These include: creating a ground truth database for research
in document image analysis and understanding; a system to extract bibliographic data
automatically from online journals; and an alternative method that could improve the
productivity of the reconcile (final verification) stage in the system.

12.1 Ground truth data: PathFinder

12.1.1 Introduction and objective

Successful document image analysis is greatly dependent on ground truth data for the
design, training and testing of algorithms for data identification and extraction. However,
ground truth datasets and their associated analysis and visualization tools are usually
created to analyze problems in specific datatypes: skewed document images (Okun et
al.)48, handwritten documents (Cha and Srihari)49, video sequences (Doermann and
Mihalcik)50, statistical data (Swayne et al.)51, and speech signals (Barras et al.)52.
Moreover, apart from the domain-specific nature of these datasets and tools, they are
usually limited as to operating platforms and data formats, as described in an excellent
taxonomy on this subject by Kanungo et al.53

To our knowledge no ground truth dataset exists that represents the corpus of biomedical
journals, and none with the goal of extracting the text representing the bibliographic
fields descriptive of the articles within these journals.

In meeting this challenge, the main objective of the PathFinder (Public Archive To Help
Find New Designs for Expert Ratiocination) project is to exploit the vast amounts of
document images and OCR-converted and operator-verified data, already collected in the
MARS project, to aid in the development of innovative and efficient algorithms for
automatic zoning, labeling and reformatting by the computer science and medical
informatics communities. This is to be done by developing a ground truth database
accessible via the Web. This ground truth data will include page, zone, line, word, and
character level information. In addition to providing a public site for researchers
worldwide to develop and test their algorithms, this system will enable them to
graphically visualize the ground truth data and employ an automated analysis assistant.
Code-named Rover (gROundtruth Vs. Engineered Results), this automated analysis
assistant will compare the results of a researcher’s program to the ground truth data. The
ground truth and results data will be in XML and MARS Rover will be written in Java.
The overall website development will use MacroMedia Dreamweaver UltradDev 4 to
provide a rich interface and extensive database connectivity.

12.1.2 Design considerations

 75

Page layout. Identifying geometric features to design rule-based algorithms for
automated data extraction is a non-trivial task since (as discussed earlier in this report)
there is a variety of layout geometries in the 4,300 journal titles indexed in MEDLINE,
though most follow the reading order paradigm of article title-author names-author
affiliation-abstract. Ground truth data must include samples of all major layout types
classified as follows:

• Series 10000 – The abstract is in a single column and covers the width of
the page. There are 13 sub-types in this series. The variations cover the
location of the affiliation field.

• Series 12000 – The abstract is in a single column in a double column
layout. It is always in the left hand column followed by the body of the
article. There are 13 sub-types in this series, the variations again covering
the location of the affiliation.

• Series 12200 – The abstract appears in two adjacent columns, and the
affiliation occupies the full width of a single column or might span a
double column. There are 13 sub-types in this series involving the
location of the affiliation.

• Series 99999 – This series includes journals that do not follow the usual
reading order paradigm. There are over 1,000 journal titles that exhibit
these non-standard formats, and offers challenges to automation.

Data format. The data format of choice is XML for images, OCR-converted data and
operator-verified data since XML excels in adaptation (to accommodate changes in data),
maintenance, linking (from one piece of data to another), simplicity, and portability over
networks, operating systems and development environments. Moreover, XML is growing
in popularity and its strengths have been proven in existing MARS modules such as
CheckIn and Upload. One of the first tasks in the PathFinder project will be to select and
convert the MARS ground truth data into XML.

Modifying existing data. While rich in the information it provides, the existing data has
certain deficiencies. For example, although OCR output characters in error are corrected,
their attributes (e.g., italics or bold) are not. But these attributes can serve as features to
create algorithmic rules to correctly identify zones or labels. Therefore, some effort will
be made to correct these before including them in the ground truth dataset.

12.1.3 Rover: a visualization and analysis tool

Once the data is available in XML format along with the original TIFF image,
researchers need the functionality to:

• Load a TIFF image and the corresponding XML file into an application,
and display the XML data, where appropriate, overlaid on the image.

• Modify and add new ground truth data.
• Compare the results of new algorithms against the ground truth data.

 76

A survey of visualization tools53 identified TrueViz as a suitable platform for the design
of Rover, since it provides the first two features noted above. TrueViz is a public domain
tool developed at the University of Maryland for visualizing, creating and editing ground
truth and metadata. It is implemented in Java and works on Windows and Unix platforms
(specifically, it has been successfully tested in the Windows 2000 and Sun Solaris 2.6
environments). It reads and stores ground truth and metadata in XML format, and reads
the corresponding TIFF images. It has the ability to allow the user to inspect ground truth
data at many levels, viz., at the page, zone, line, word, and character levels, and provides
pertinent information at each level. For example, at the character level, such information
includes the character code, font type and style, and bounding box (x1,y1,x2,y2)
coordinates.

To serve as an effective analysis assistant, Rover will extend TrueViz to provide
researchers the capability to compare their XML data to MARS ground truth XML data
graphically, and thereby serve as a powerful tool in helping them iteratively refine their
algorithms. In addition, it will provide numerous statistics and visual presentations on
specified areas. For example, the user would be able to use Rover to compare all
characters in the dataset that are bold, and to enumerate errors. Rover would visually
locate the mistakes and report statistics on the query. In this example it would report the
number of bold characters, the number detected correctly, and the number detected
incorrectly, both as absolute numbers and as percentages. Rover would also export this
information to a database or spreadsheet for further analysis.

Figure 12.1.1 Rover screen snapshot of TIFF page and zone segments.

12.1.4 Ground truth distribution

A website will provide access to the ground truth data, though it will go beyond serving
as a simple data repository. Our objective is to encourage researchers to share and
exchange ideas, as well as provide feedback to our development team for new desirable
features. Figure 12.1.2 shows the organization of the website and how the elements
interconnect. This section presents an overview of the website layout and functionality.

 77

MA RS PathFinder Layout

Flash Intro
Tools : MacroMedia Flash 5

Home Page
User Login

Tools : UltraDev4, SQL Server 2000

New User
Registration

Tools : UltraDev4, SQL Server 2000

Main User Page
Tools : UltraDev4

Web Board
Tools : UltraDev4, unknown 3rd party

Web board (freeware)

Rover
Tools : UltraDev4, XML, Java,

Tiff Viewer, Visual Cafe
TIFF/XML Data

Tools : UltraDev4

Figure 12.1.2 – Main sections of Website and tools

Product introduction. A Macromedia Quick Flash “movie” is displayed to the users,
though this may be bypassed. We have already developed this movie and a demonstration
of it is available at www.geocities.com/egalthan/Movie1.html. The metaphor used is a
Sherlock Holmes style magnifying glass moving over a rare biomedical document. Figure
12.1.3 is a screen snapshot of the final frame of the movie.

Figure 12.1.3 The final frame of the opening Macromedia Flash Movie.

User login. On the main page of the website, users are asked for a name and password.
This data will be stored in a SQL Server 2000 database along with the website data. We
intend to use Macromedia Ultradev as the design tool, because it readily allows for
password protection and database connectivity. While we do not anticipate restricting
anyone from accessing this site, we intend to require all users to register. When registered
users log in, they will be taken to the main user page. Unregistered users will be
presented with a registration page before being allowed access.

 78

New user registration. The system will require first time users to enter a few important
items of information that will enable us to provide security to the system as well as the
ability to contact users with important new data or features added to the website in the
future. The registration page will be developed using Ultradev which allows the
developer a graphical design environment and provides rapid page development.

Data access. Once logged in or registered, the user would have access to all the ground
truth data and tools. Since the data collection will be quite large, the system will allow
users to download the entire data set or any subset they choose. For example, some users
may only be interested in certain types of journal layouts, such as double column
abstracts. The ground truth data will be organized in a hierarchical fashion as shown
below.

Series Misc.Series 12000Series 10000 Series 12200

All Series

Series 10000

Series 10001

Series 10010

Series 12000

Series 12001

Series 12010

Series 12000

Series 12001

Series 12010

Misc00001

Misc00001

Misc99999

Figure 12.1.4 Hierarchical tree structure for storage and retrieval of ground truth data

Data analysis. The users will be provided a link to launch Rover. While the initial
version of this tool will possess the current functionality of TrueViz, the complete
analysis support discussed earlier will be designed in a later phase. At present, TrueViz
may be used to view ground truth data and research data (e.g., results of algorithmic
processing) following the XML defined structure. Rover will provide the users the ability
to automatically compare ground truth data against research data, and perform statistical
analysis tasks.

Bulletin board. This section of the website will be available to the user community to
report bugs, and use as a forum for discussions related to algorithmic development.

Upload and download area. This section of the website is for the users to upload and
download files, such as technical papers written, algorithm source code, and new ground
truth data.

 79

12.2 Data extraction from online journals

12.1 Background

With the rapid expansion and utilization of the Internet and Web technologies, there is an
increasing number of online biomedical journals, some of which are being indexed in
MEDLINE. Online journals pose new challenges in the areas of automated document
analysis and content extraction, database citation records creation, data mining and
related applications. New techniques are needed to capture, classify, analyze, extract,
modify, and reformat Web-based document information for computer storage, access,
and processing. We propose the design and development of an automated system,
temporarily code-named WebMARS for Web-Based Medical Article Records System, to
create citation records for MEDLINE. This system54 will download and classify
document articles on the Web, parse and label contents of each article, extract and
reformat the bibliographic fields from the article, display the entire citation to operators
for reconciling (validation), and upload the citation records to the MEDLINE database.

12.2 Project objectives

The objectives are to design, develop, evaluate and implement a production system that
will automate the extraction of bibliographic data from online journals on the Web for the
MEDLINE database.

12.3 Project significance

With the increasing role of online journals in biomedical publishing, it is imperative that
they be processed automatically to extract bibliographic data with a minimum of human
labor. Two obvious advantages of such a Web-based document analysis and content
extraction approach compared to either manual keyboard entry or the scanning/OCR
approach are saving labor costs and improving performance (speed and accuracy).

12.4 System overview

The proposed WebMARS system would consist of seven servers and two types of
operator workstations: download and classification, and reconciling. A high-level
diagram of the system is shown in Figure 12.2.1. All workstations and servers are
networked via a LAN and communicate through the WebMARS database server.

Briefly, the WebMARS system will work as follows. An operator downloads an online
journal from a publisher’s website, and the PDF or HTML files of the articles are sent to
the file server. The PDF to HTML files conversion server performs text conversion. The
article zones creation and labeling server extracts text zones from the HTML files, and
labels these zones as belonging to "title", "author", "affiliation", "abstract", “pagination”,
“databank accession number”, “grant number”, etc. The article zone contents
modification server extracts, modifies, and reformats the text according to MEDLINE
database conventions. The MEDLINE article zones creation and Web-based reconciling
workstation selects and combines the appropriate portions of zone contents to create

 80

records that are viewed by operators for validation and reconciling. The reconciling
workstation operator then checks, proofreads, and corrects any remaining problems in the
records including character and symbol validation, citation reformatting, field label
selection and confirmation. The SGML-based MEDLINE citation records creation server
generates text zones directly from journal publisher SGML information, if available, that
can be used to further improve labeling process. Finally, the MEDLINE citation records
uploading server uploads the completed citation records to the NLM’s DCMS database
for later indexing.

12.5 System servers and workstations

Each subsystem of the WebMARS system is described below.

Web files collection and classification workstation. This workstation downloads and
classifies Web-based files as abstract, full text, PDF or image files55. It consists of two
processes: downloading and classification. The first is based on WinInet software tool
and a combination of the Breadth First Search algorithm and the Constraint Satisfaction
method to traverse the Web page’s links, recognize and generate the successors of the
downloading pages. The second relies on the contents of the hyperlinks (name and
address) to classify the files.

The downloading process shown in Figure 12.2.2 selects the Web address of the start
page, and sends a request to the Web server to download that page. During download, the
links of the current downloading page are classified, and the children are generated and
added to the end of the open list (consisting of addresses of pages waiting to be
downloaded). Then the successfully downloaded page is classified and saved to a
directory in the file server corresponding to its type, and the address of the start page is
added as a node to the closed list (consisting of addresses of pages that are successfully
downloaded). The open list now contains all of the successor links of the downloaded
page that are waiting to be downloaded. The downloading process continues selecting the
first node of the open list to download. If the download is successful, the node is
removed from the open list and added to the closed list. Otherwise, the node is put into
the revisited list (consisting of addresses that failed during the downloading process, and
are to be revisited later). The children of the successfully downloaded page are
determined by the classification process and added to the end of the open list. The entire
process is repeated until the open list is empty.

The classification process validates the hyperlinks to make sure that they have satisfied
the predefined constraints for saving the downloaded Web page and generating its
children. Since the contents of the hyperlinks (name and address) consist of useful
information about file types, these can be used to determine the appropriate storage for
saving the documents and the satisfied child links of the currently downloading page. The
downloaded Web pages are saved in different directories in the file server corresponding
to their types. A hyperlink, which satisfies the constraints to be a potential successor of
the current downloading web page, is generated as a child node and added to the open
list. Otherwise, it would be eliminated.

 81

PDF to HTML files conversion server. Occasionally, publishers offer certain Web
journal articles as PDF files rather than as HTML files. Since WebMARS requires the
HTML file format, this conversion server subsystem is used to convert downloaded PDF
files into HTML files with available commercial software.

Article zones creation and labeling server. This server subsystem first parses and creates
text zones for each journal article based on its HTML file, and then labels these text
zones. The subsystem consists of three modules: the automated zoning module, the
automated labeling module, and the automated updating module.

The automated zoning module relies on HTML tags to parse and then to create text zones
for each article of a journal issue.

The automated labeling module labels these text zones using a combination of statistics
and fuzzy rule-based technology. Statistics are used to generate membership functions for
the fuzzy rules-based method. Features and fuzzy rules derived for the automated
labeling module are based on an analysis of the HTML layouts of journals. Both
geometric and non-geometric features are considered here. Geometric features of a zone
are based on location and order of appearance. Non-geometric features are derived from
contents of zone, statistics, and font characteristics. Since text zones are characterized by
the words they contain, word matching is an important operation in this module. For
example, a zone has a higher probability of being labeled as “affiliation” when it contains
words related to country, city, and school names. Also, a zone located between the words
“abstract” and “keywords” has a higher probability of being labeled as “abstract” than
other labels. For this purpose, fourteen word lists have been created, and the ternary
search tree algorithm56 is used as a search engine for the word matching.

The automated updating algorithm is based on a difference analysis between text zones
generated by this subsystem and corresponding text zones corrected by operators during
the reconcile stage. Statistical labeled text zone information obtained from this analysis
can be used to improve the labeling accuracy.

Article zone contents modification server. This subsystem extracts, modifies, and
reformats text in labeled zones according to MEDLINE database conventions. It consists
of two modules: the label cleanup module and the cleanup coach module. The first
prepares bibliographic record information for the reconcile operator, while the second
operates on post-reconcile data to collect statistics in order to develop new rules to
improve the performance of the first module.

The label cleanup module removes, replaces and/or processes HTML tags and special
characters in labeled zones, and reformats the “title”, “author”, “affiliation” and
“abstract” zones. Figure 12.2.3 shows examples of author and abstract before and after
this process. The label cleanup module relies on rules derived by analyzing the page
layout for each journal. Generic rules cover situations that occur in every journal, and for
journals for which we have no a priori data. In addition, there will be rules specific for a
particular journal. For unknown tags or confusing text, the results of any processing will

 82

be enclosed in special symbols such as curly brackets, { }, and the enclosed characters
will be highlighted to alert reconcile operators.

Since rules implemented in the label cleanup module are used to prepare labeled zone
contents for reconciliation by operators, the final corrected zone contents can be used to
improve the module’s performance. Given that a journal issue has been reconciled, the
cleanup coach module automatically extracts differences between the final correct labels
and the corresponding output from the label cleanup module. These differences may be
analyzed manually or automatically to modify existing rules, or to infer additional rules
for the label cleanup module.

MEDLINE article zones creation and Web-based reconciling workstation. This
workstation selects and combines the appropriate portions of zone contents to create
MEDLINE citation records for reconciling. The reconciling operator then checks,
proofreads, searches, and corrects any remaining problems in the citation records
including character and symbol errors, reformatting citations, capturing extra fields if
necessary (pagination, data accession number, grant number, etc.), text zone labels
selection and validation.

MEDLINE citation records uploading server. This subsystem creates an XML file based
on NLMCommon DTD46 for completed citation records of a journal issue and uploads
the file to the NLM DCMS database for later indexing.

SGML-based MEDLINE citation records creation server. Some journal publishers also
supply to NLM some portions of MEDLINE citation records such as “title”, “author”,
“abstract”, “pagination” in SGML format. However, the records are not always complete,
so additional effort is often required to capture missing information. Since the SGML
information even if incomplete is usually correct, this server subsystem exploits such
information by generating text zones directly from it. These text zones will be used to
further improve the labeling and reconciliation processes.

12.6 Summary

This section describes a proposed system to create biomedical bibliographic records for
the MEDLINE database directly from online journals. The advantages of WebMARS
over either manual keyboard entry or the scanning/OCR approach are saving labor costs
and improving performance. The performance of our WebMARS prototype has been
evaluated using a sample of 28 medical journal Web sites. Preliminary evaluation results
show the feasibility of our design to create MEDLINE citations directly and effectively
using Web document pages.

 83

 Figure 12.2.1: WebMARS system diagram (Bold outlines show servers)

 84

 Figure 12.2.2 Dowloading process

Author label input: Author label output:

<NOBR>Henry Abriel, MD, PhD</NOBR> Abriel H
<NOBR>Michael V. Wehrens, MSc</NOBR> Wehrens MV

Abstract label input Abstract label output

<I>Background</I>—Multiple mutations BACKGROUND: Multiple mutations of
<I>SCN5A</I>, the gene that of SCN5A, the gene that
encodes the human Na⁺ channel encodes the human Na(+) channel
<IMG SRC="/math/agr.gif" ALT="{alpha}" alpha-subunit, are linked to 1 form
BORDER="0">-subunit, are linked to 1 form…

Figure 12.2.3 Examples of author and abstract before and after
the label cleanup process

 85

12.3 Alternative method for text verification

The conventional approach to verifying the text output of any OCR system, or as in the
case of MARS the output of a succession of automated processes, is to present the text in
the same sequence as it appears on the printed page, and to highlight the low confidence
characters (in color) in the text words. Then, as in our reconcile workstation, the operator
can "tab" quickly from one suspected character to the next and make the necessary
corrections. This conventional approach has some drawbacks. For example, the operator
must detect the suspected character surrounded by a mass of correct text. Also, the text
must be corrected as encountered, thereby breaking the rhythm of identifying incorrect
characters.

An alternative method is proposed that may prove to improve operator productivity.
Called Carpet Character Certification and Correction, or the “Carpet” method, it
involves grouping like characters (drawn from a number of pages or journal issues at the
same time) and displaying them in groups in a single window, as shown in Figure 12.3.1.
Each character appears in its “edit box.” Only low confidence A - Z and 0 – 9 characters,
of the same type, would be displayed in groups. The example shows a set of characters
in the edit boxes, mostly e’s, some of them a misreading of an s or an E as shown in the
corresponding bitmapped images right above the edit boxes. Since context is important to
detect poorly captured character shapes, the system must provide the display of the image
fragment (a word or phrase) that provides the context in which the (presumably) incorrect
character appears. Such context will particularly help distinguish letters or numbers that
appear similar, e.g., 1, I or 0,O.

The GUI for the Carpet system must possess the following functions:

1. An Automatic Context display of the TIFF image must be available when any of the

edit boxes is focused on.
2. With a mouse click on an edit box, or using the F1 thru F9 keys, the operator should

be able to correct the character. In Figure 12.3.1, the bitmap of each low confidence
character appears above the edit text boxes. If the operator is unclear as to what the
character is, he/she may type in a '?' that invokes the image fragment to provide the
necessary context.

3. To continue, the operator should be able to select Next>> and load the next batch of 9
characters, or select <<Previous for a second look at the previous 9. By selecting
Next>>, all characters are set to high confidence.

4. Reset all characters displayed to low confidence, in case of an accidental clicking of
the Next>> button.

5. Click OK to stop processing.

The Carpet system is to be implemented using Visual C++ with the Kodak Image
libraries. Following the software development, we intend to conduct a performance study
using this system for reconciling, and measure the residual error rate and the time taken
for correcting and verifying all the characters from a complete journal issue at a time.
Should the accuracy and time saved prove to be an improvement over the current

 86

verification method, this module will be incorporated in the reconcile workstation
software.

Figure 12.3.1 GUI for Carpet Character Certification and Correction

 87

13 References

1. Thoma GR, Walker FL, Hauser SE. Biomedical document preservation by electronic
imaging. In: Converting Information for WORM Optical Storage, Roth JP, ed., Meckler,
1990; 92-131.

2. Hauser SE, Thoma GR, Gass SI. Factors affecting the conversion rate of bound
volumes to electronic form. Proc. Electronic Imaging ’89, Boston MA, 1989; 1041-6.

3. Thoma GR, Hauser SE, Walker FL. Managing an archive of electronic document
images. Proc. ASIS, vol. 26, 1989; 59-65.

4. Thoma GR, Cookson JP, Walker FL, Hauser SE. Interfacing optical disks to a
document image storage and retrieval system. J. Imaging Technology, vol. 12, no. 5,
October 1986; 288-92.

5. Thoma GR, Long LR, Berman LE. Design issues for a digital x-ray archive accessed
over Internet. Proc. SPIE: Storage and Retrieval for Image and Video Databases II, vol.
2185; San Jose CA: 1994; 129-38.

6. Hauser SE, Hsu W, Thoma GR. Request routing with a back error propagation
network. Proc. SPIE: Applications of Artificial Neural Networks IV, vol. 1965; Orlando
FL: 1993; 689-95.

7. Thoma GR, Hauser SE, Le DX, Muller D, Walker FL. WILL: Advances in the
management of interlibrary loan. Vol. 1. Internal technical report. Bethesda, MD:
National Library of Medicine, Lister Hill National Center for Biomedical
Communications, Communications Engineering Branch, September 1995; 26 pp.

8. Thoma GR, Hauser SE, Le DX, Muller D, Walker FL. WILL: Design of a standalone
WILL unit. Vol. 2. Internal technical report. Bethesda, MD: National Library of
Medicine, Lister Hill National Center for Biomedical Communications, Communications
Engineering Branch, September 1995; 27 pp.

9. Walker F, Thoma GR. DocView: Providing access to printed literature through the
Internet. Proc. 10th Integrated Online Library Systems Meeting, New York: Learned
Information, Inc. May 1995; 165-73.

10. Thoma GR, Walker FL. Access to document images over the Internet. In: Rada R,
Ghaoui C, eds. Medical Multimedia; Oxford UK: Intellect, 1995; 179-93.

11. Walker FL, Thoma GR. Multimode delivery of multimedia information. Proc. 14th
National Conference on Integrated Online Library Systems, Medford NJ: Information
Today Inc.; May 1999; 141-52.

 88

12. Walker FL, Thoma GR. Access to document images over the Internet. Proc. 9th
Integrated Online Library Systems Meeting, New York. May 1994; 185-197.

13. Le DX, Thoma GR, Wechsler H. Document image analysis using integrated image
and neural processing. Proc. 3rd ICDAR’95, Montreal, Canada; Aug 1995; Vol. I, 327-30.

14. Le DX, Thoma GR, Wechsler H. Classification of binary document images into
textual or non-textual data blocks using neural network models. Machine Vision and
Applications, Issue 8, 1995, 289-304.

15. Le DX, Thoma GR, Wechsler H. Automated page orientation and skew angle
detection for binary document images. Pattern Recognition, Vol. 27, No. 10, October
1994; 1325-44.

16. Le DX, Thoma GR. Automated portrait/landscape mode detection on a binary image.
Proc. SPIE Symposium on Aerospace and Remote Sensing – Visual Information
Processing II, Vol. 1961, Orlando FL, April 1993, 202-12.

17. Hauser SE, Cookson TJ, Thoma GR. Using back error propagation networks for
automatic document image classification. Proc. SPIE Applications of Artificial Neural
Networks IV, Vol. 1965, Orlando FL, April 1993, 142-50.

18. Le DX, Thoma GR. Document skew angle detection algorithm. Proc. SPIE
Symposium on Aerospace and Remote Sensing – Visual Information Processing II, Vol.
1961, Orlando FL, April 1993, 251-62.

19. Le DX, Thoma GR, Wechsler H. Document classification using connectionist
models. Proc. IEEE International Conference on Neural Networks, Orlando FL, June
1994, vol. 5; 3009-14.

20. Thoma GR, Le DX. Medical database input using integrated OCR and document
analysis and labeling technology. Proc. 1997 Symposium on Document Image
Understanding Technology, College Park, MD: University of Maryland Institute for
Advances in Computer Studies; 1997; 180-81.

20a. Thoma GR. Automating data entry for an online biomedical database: a document
image analysis application. Proc. 5th International Conference on Document Analysis and
Recognition (ICDAR’99). Bangalore, India; Sept. 1999; 370-3.

21. Hauser SE, Browne AC, Thoma GR, McCray AT. Lexicon assistance reduces manual
verification of OCR output. Proc. 11th IEEE Symposium on Computer-based Medical
Systems. Los Alamitos, CA: IEEE Computer Society. June 1998; 90-5.

22. Le DX, Kim J, Pearson GF, Thoma GR. Automated labeling of zones from scanned
documents. Proc. 1999 Symposium on Document Image Understanding Technology,

 89

College Park, MD: University of Maryland Institute for Advances in Computer Studies;
219-26.

23. Ford GM, Hauser SE, Thoma GR. Automatic reformatting of OCR text from
biomedical journal articles. Proc.1999 Symposium on Document Image Understanding
Technology, College Park, MD: University of Maryland Institute for Advances in
Computer Studies; 321-25.

24. Jain AK, Yu B. Document representation and its application to page decomposition. .
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, 1998, 294-308.

25. Nagy G, Seth S, Viswanathan M. A prototype document image-analysis system for
technical journals. Computer, Vol. 25, 1992, 10-22.

26. O'Gorman L. The document spectrum for page layout analysis. IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. 15, 1993, 1162-73.

27. Niyogi D, Srihari SN. Integrated approach to document decomposition and structual
analysis. International Journal of Imaging Systems and Technology, Vol. 7, 1996, 330-
42.

28. Farrow GSD, Xydeas CS, Oakley JP, Khorabi A, Prelcic NG. A comparison of
system architecture for intelligent document understanding. Signal Processing-Image
Communication, Vol. 9, 1996, 1-19.

29. Kanai J, Rice SV, Nartker TA, Nagy G. Automated evaluation of OCR zoning. IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 17, 1995, 86-90.

30. Krishnamoorthy M, Nagy M, Seth S, Viswanathan M. Syntactic segmentation and
labeling of digitized pages from technical journals. IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. 15, 1993, 737-47.

31. Baird HS. Model-directed document image analysis. Proc. 1999 Symposium on
Document Image Understanding Technology, College Park, MD: University of Maryland
Institute for Advances in Computer Studies, 42-9.

32. PrimeOCR Access Guide, Version 3.0. Prime Recognition, 1998.

33. Hones F, Lichter J. Layout extraction of mixed mode documents. Machine Vision and
Applications 7, 1994, 237-46.

34. Taylor S, Fritzson R, Pastor J. Extraction of data from preprinted forms. Machine
Vision and Applications 5, 1992, 211-22.

35. Tsujimoto S, Asada H. Major components of a complete text reading system. Proc.
IEEE, Vol. 80, No. 7, 1992, 1133-49.

 90

36. Tateisi Y, Itoh N. Using stochastic syntactic analysis for extracting a logical structure
from a document image. Proc. IEEE Int. Conf. Neural Networks, Vol. 2, 1994, 391-94.

37. Niyogi D, Srihari SN. An integrated approach to document decomposition and
structural analysis. Int. Journal of Imaging Systems and Technology, Vol. 7, 1996, 330-
42.
38. Le DX, Thoma GR. Page layout classification technique for biomedical documents.
Proc. World Multiconference on Systems, Cybernetics and Informatics (SCI 2000);
Orlando, FL; Vol. 10, July 2000; 348-52.

39. Le DX, Thoma GR. Automated document labeling using integrated image and neural
processing. Proc. World Multiconference on Systems, Cybernetics and Informatics,
Orlando, FL; Vol. 6, 1999; 105-8.

40. Kim J, Le DX, Thoma GR. Automated Labeling in Document Images. Proc. SPIE:
Document Recognition and Retrieval VIII, Vol. 4307, San Jose CA, January 2001, 111-
22.

41. Hauser SE, Le DX, Thoma GR. Automated zone correction in bitmapped document
images. Proc. SPIE: Document Recognition and Retrieval VII, Vol. 3967, San Jose CA,
January 2000, 248-58.

42. Ford G, Hauser SE, Le DX, Thoma GR. Pattern matching techniques for correcting
low confidence OCR words in a known context. Proceedings of SPIE, Vol. 4307,
Document Recognition and Retrieval VIII, January 24-25, 2001, pp. 241-9.

43. Lasko TA, Hauser SE. Approximate string matching algorithms for limited-
vocabulary OCR output correction. Proceedings of SPIE, Vol. 4307, Document
Recognition and Retrieval VIII, January 24-25, 2001, pp. 241-9.

44. Pearson G, Moon CW. Bridging two biomedical journal databases with XML: A case
study. Proc. 14th IEEE Symposium on Computer-Based Medical Systems. Los Alamitos,
CA: IEEE Computer Society. July 2001, 309-14.

45. World Wide Web Consortium, XML Working Group, “XML 1.0 Specification 10-
February-1998”, ed. T. Bray, J. Paoli, C.M. Sperberg-McQueen. Available in various
forms: www.w3.org/TR/1998/REC-xml-19980210.

46. “NLM to use XML and DTD for MEDLINE Data”, 10/13/00,
www.nlm.nih.gov/news/MEDLINEdata.html; the NLM Common DTD is given in
www.nlm.hin.gov/bsd/licnesee.html.

47. Desai G and Fenner J. Unleash the power of XML. Imaging and Document Solutions,
Vol. 9, No. 12, Dec 2000, 29-32.

48. Okun O, et al. An experimental tool for generating ground truths for skewed page
images. Proc. SPIE Document Recognition and Retrieval VIII. Vol. 4307, San Jose CA,
January 2001, 22-33.

 91

49. Cha S-H, Srihari SN. Handwritten document image database construction and
retrieval system. Proc. SPIE Document Recognition and Retrieval VIII. Vol. 4307, San
Jose CA, January 2001, 13-21.

50. Doermann D and Mihalcik D. Tools and techniques for video performance
evaluation. Proc. 15th International Conference on Pattern Recognition. Barcelona, Spain,
September 2000, 167-70.

51. Swayne DF et al. Xgobi: interactive dynamic data visualization in the X window
system. Journal of Computational and Graphical Statistics 7, 1998.

52. Barras C, et al. Transcriber: a free tool for segmenting, labeling and transcribing
speech. Proc. 1st Int. Conf. Language Resources and Evaluation. Granada, Spain, May
1998; 1373-76.

53. Kanungo T, et al. TRUEVIZ: A groundtruth/metadata editing and visualizing toolkit
for OCR. Proc. SPIE Document Recognition and Retrieval VIII. Vol. 4307, San Jose CA,
January 2001, 1-12.

54. Le DX, Tran LQ, Chow J, Kim J, Hauser SE, Moon CW, Thoma GR. Automated
medical records citation records creation for Web-based online journals. Proc. 14th IEEE
Symposium on Computer-Based Medical Systems, Los Alamitos, CA: IEEE Computer
Society. July 2001, 315-20.

55. Tran LQ, Moon CW, Le DX, Thoma GR. Web page downloading and classification.
Proc. 14th IEEE Symposium on Computer-Based Medical Systems. Los Alamitos, CA:
IEEE Computer Society. July 2001, 321-6.

56. Bentley J, Sedgewick B. Ternary search trees. Dr Dobb’s Journal, April 1998, 20-25.

57. Hall PAV, Dowling GR. Approximate string matching. ACM Computing Surveys,
1980; 12:381-402.

58. Hauser SE, Sabir TF, Thoma GR. Speech recognition for program control and data
entry in a production environment. Proc. SPIE: Intelligent Systems in Design and
Manufacturing II, Vol 3833, 1999; 24-34.

